pub fn dijkstra<G, F, K>(
    graph: G,
    start: <G as GraphBase>::NodeId,
    goal: Option<<G as GraphBase>::NodeId>,
    edge_cost: F
) -> HashMap<<G as GraphBase>::NodeId, K>
where G: IntoEdges + Visitable, <G as GraphBase>::NodeId: Eq + Hash, F: FnMut(<G as IntoEdgeReferences>::EdgeRef) -> K, K: Measure + Copy,
Expand description

[Generic] Dijkstra’s shortest path algorithm.

Compute the length of the shortest path from start to every reachable node.

The graph should be Visitable and implement IntoEdges. The function edge_cost should return the cost for a particular edge, which is used to compute path costs. Edge costs must be non-negative.

If goal is not None, then the algorithm terminates once the goal node’s cost is calculated.

Returns a HashMap that maps NodeId to path cost.

§Example

use petgraph::Graph;
use petgraph::algo::dijkstra;
use petgraph::prelude::*;
use std::collections::HashMap;

let mut graph: Graph<(), (), Directed> = Graph::new();
let a = graph.add_node(()); // node with no weight
let b = graph.add_node(());
let c = graph.add_node(());
let d = graph.add_node(());
let e = graph.add_node(());
let f = graph.add_node(());
let g = graph.add_node(());
let h = graph.add_node(());
// z will be in another connected component
let z = graph.add_node(());

graph.extend_with_edges(&[
    (a, b),
    (b, c),
    (c, d),
    (d, a),
    (e, f),
    (b, e),
    (f, g),
    (g, h),
    (h, e),
]);
// a ----> b ----> e ----> f
// ^       |       ^       |
// |       v       |       v
// d <---- c       h <---- g

let expected_res: HashMap<NodeIndex, usize> = [
    (a, 3),
    (b, 0),
    (c, 1),
    (d, 2),
    (e, 1),
    (f, 2),
    (g, 3),
    (h, 4),
].iter().cloned().collect();
let res = dijkstra(&graph, b, None, |_| 1);
assert_eq!(res, expected_res);
// z is not inside res because there is not path from b to z.