1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
//! This is a [`bevy`] plugin that adds framepacing and framelimiting to improve input latency and
//! power use.
//!
//! # How it works
//!
//! This works by sleeping the app immediately before the event loop starts. In doing so, this
//! minimizes the time from when user input is captured (start of event loop), to when the rendered
//! frame using this input data is presented (`RenderStage::Render`). Because the event loop is,
//! well, a loop, it is equally accurate to think of this as sleeping at the beginning of the frame,
//! before input is captured. Graphically, it looks like this:
//!
//! ```none
//!  /-- latency --\             /-- latency --\
//!  input -> render -> sleep -> input -> render -> sleep
//!  \----- event loop -----/    \----- event loop -----/
//! ```
//!
//! One of the interesting benefits of this is that you can keep latency low even if the framerate
//! is limited to a low value. Assuming you are able to reach the target frametime, there should be
//! no difference in motion-to-photon latency when limited to 10fps or 120fps.
//!
//! ```none
//!      same                        same
//!  /-- latency --\             /-- latency --\
//!  input -> render -> sleep    input -> render -> sleeeeeeeeeeeeeeeeeeeeeeeep
//!  \----- event loop -----/    \---------------- event loop ----------------/
//!           60 fps                           limited to 10 fps
//! ```

#![deny(missing_docs)]

use bevy::{
    diagnostic::{Diagnostic, DiagnosticId, Diagnostics},
    prelude::*,
    render::{Extract, RenderApp, RenderStage},
    utils::Instant,
    winit::WinitWindows,
};
use std::{
    collections::VecDeque,
    sync::{Arc, Mutex},
    time::Duration,
};

/// Adds framepacing and framelimiting functionality to your [`App`].
#[derive(Debug, Clone, Component)]
pub struct FramepacePlugin;
impl Plugin for FramepacePlugin {
    fn build(&self, app: &mut App) {
        app.init_resource::<FramepaceSettings>()
            .init_resource::<FrametimeLimit>()
            .init_resource::<FramePaceStats>()
            .add_system_to_stage(CoreStage::Update, get_display_refresh_rate)
            .add_plugin(FramePaceDiagnosticsPlugin);
        app.sub_app_mut(RenderApp)
            .insert_resource(FrameTimer::default())
            .add_system_to_stage(RenderStage::Extract, extract_resources)
            .add_system_to_stage(
                RenderStage::Cleanup,
                // We need this system to run at the end, immediately before the event loop restarts
                framerate_limiter.at_end(),
            );
    }
}

/// Framepacing plugin configuration.
#[derive(Debug, Clone, Resource)]
pub struct FramepaceSettings {
    /// Configures the framerate limiting strategy.
    pub limiter: Limiter,
}
impl FramepaceSettings {
    /// Builds plugin settings with the specified [`Limiter`] configuration.
    pub fn with_limiter(mut self, limiter: Limiter) -> Self {
        self.limiter = limiter;
        self
    }
}
impl Default for FramepaceSettings {
    fn default() -> FramepaceSettings {
        FramepaceSettings {
            limiter: Limiter::Auto,
        }
    }
}

/// Configures the framelimiting technique for the app.
#[derive(Debug, Clone)]
pub enum Limiter {
    /// Uses the window's refresh rate to set the frametime limit, updating when the window changes
    /// monitors.
    Auto,
    /// Set a fixed manual frametime limit. This should be greater than the monitors frametime
    /// (`1.0 / monitor frequency`).
    Manual(Duration),
    /// Disables frame limiting
    Off,
}

impl Limiter {
    /// Returns `true` if the [`Limiter`] is enabled.
    pub fn is_enabled(&self) -> bool {
        !matches!(self, Limiter::Off)
    }

    /// Constructs a new [`Limiter`] from the provided `framerate`.
    pub fn from_framerate(framerate: f64) -> Self {
        Limiter::Manual(Duration::from_secs_f64(1.0 / framerate))
    }
}

impl std::fmt::Display for Limiter {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let output = match self {
            Limiter::Auto => "Auto".into(),
            Limiter::Manual(t) => format!("{:.2} fps", 1.0 / t.as_secs_f32()),
            Limiter::Off => "Off".into(),
        };
        write!(f, "{}", output)
    }
}

#[derive(Debug, Default, Clone, Resource)]
struct FrametimeLimit(Duration);

#[derive(Debug, Resource)]
struct FrameTimer {
    render_end: Instant,
}
impl Default for FrameTimer {
    fn default() -> Self {
        FrameTimer {
            render_end: Instant::now(),
        }
    }
}

fn get_display_refresh_rate(
    settings: Res<FramepaceSettings>,
    winit: NonSend<WinitWindows>,
    windows: Res<Windows>,
    mut frame_limit: ResMut<FrametimeLimit>,
) {
    if !settings.is_changed() && !winit.is_changed() {
        return;
    }
    let new_frametime = match settings.limiter {
        Limiter::Auto => match detect_frametime(winit, windows) {
            Some(frametime) => frametime,
            None => return,
        },
        Limiter::Manual(frametime) => frametime,
        Limiter::Off => {
            info!("Frame limiter disabled");
            return;
        }
    };

    if new_frametime != frame_limit.0 {
        info!("Frametime limit changed to: {:?}", new_frametime);
        frame_limit.0 = new_frametime;
    }
}

fn detect_frametime(winit: NonSend<WinitWindows>, windows: Res<Windows>) -> Option<Duration> {
    #[cfg(not(target_arch = "wasm32"))]
    let best_framerate = {
        let monitor = winit
            .get_window(windows.get_primary()?.id())?
            .current_monitor()?;
        bevy::winit::get_best_videomode(&monitor).refresh_rate_millihertz() as f32 / 1000.0
    };
    #[cfg(target_arch = "wasm32")]
    let best_framerate = 60.0;

    let best_frametime = Duration::from_secs_f32(1.0 / best_framerate);
    Some(best_frametime)
}

fn extract_resources(
    mut commands: Commands,
    settings: Extract<Res<FramepaceSettings>>,
    framerate_limit: Extract<Res<FrametimeLimit>>,
    stats: Extract<Res<FramePaceStats>>,
) {
    commands.insert_resource(settings.to_owned());
    commands.insert_resource(framerate_limit.to_owned());
    commands.insert_resource(stats.to_owned());
}

/// Holds frame time measurements for framepacing diagnostics
#[derive(Clone, Debug, Resource)]
pub struct FramePaceStats {
    oversleep: Arc<Mutex<VecDeque<Duration>>>,
    frametime: Arc<Mutex<Duration>>,
    error: Arc<Mutex<f64>>,
}

impl Default for FramePaceStats {
    fn default() -> Self {
        Self {
            oversleep: Arc::new(Mutex::new(VecDeque::from([Duration::ZERO; 240]))),
            frametime: Default::default(),
            error: Default::default(),
        }
    }
}

fn framerate_limiter(
    mut timer: ResMut<FrameTimer>,
    settings: Res<FramepaceSettings>,
    target_frametime: Res<FrametimeLimit>,
    stats: Res<FramePaceStats>,
) {
    let target_frametime = target_frametime.0;
    let system_start = Instant::now();
    let this_render_time = system_start.duration_since(timer.render_end);

    let mut oversleep_lock = stats.oversleep.try_lock().unwrap();
    let oversleep_max = oversleep_lock.iter().max().copied().unwrap_or_default();

    let sleep_needed = target_frametime.saturating_sub(this_render_time);
    let sleep_needed_coarse = sleep_needed.saturating_sub(oversleep_max);

    let sleep_start = Instant::now();
    if settings.limiter.is_enabled() && sleep_needed_coarse > Duration::ZERO {
        #[cfg(not(target_arch = "wasm32"))]
        std::thread::sleep(sleep_needed_coarse);
    }

    let this_oversleep = Instant::now()
        .duration_since(sleep_start)
        .saturating_sub(sleep_needed_coarse);

    if settings.limiter.is_enabled() {
        while Instant::now().duration_since(system_start) < sleep_needed {}
    }

    oversleep_lock.pop_back();
    oversleep_lock.push_front(this_oversleep);

    let frame_time = Instant::now().duration_since(timer.render_end);
    *stats.frametime.try_lock().unwrap() = frame_time;
    *stats.error.try_lock().unwrap() = frame_time.as_secs_f64() - target_frametime.as_secs_f64();

    timer.render_end = Instant::now();
}

/// Adds [`Diagnostics`] data from `bevy_framepace`
pub struct FramePaceDiagnosticsPlugin;

impl Plugin for FramePaceDiagnosticsPlugin {
    fn build(&self, app: &mut App) {
        app.add_startup_system(Self::setup_system)
            .add_system(Self::diagnostic_system);
    }
}

impl FramePaceDiagnosticsPlugin {
    /// [`DiagnosticId`] for the frametime
    pub const FRAMEPACE_FRAMETIME: DiagnosticId =
        DiagnosticId::from_u128(8021378406439507683279787892187089153);
    /// [`DiagnosticId`] for oversleep
    pub const FRAMEPACE_OVERSLEEP: DiagnosticId =
        DiagnosticId::from_u128(7873478903246724896826890280382389054);
    /// [`DiagnosticId`] for failures to meet frame time target
    pub const FRAMEPACE_ERROR: DiagnosticId =
        DiagnosticId::from_u128(978023490268634078905367093342937);

    /// Initial setup for framepace diagnostics
    pub fn setup_system(mut diagnostics: ResMut<Diagnostics>) {
        diagnostics.add(
            Diagnostic::new(Self::FRAMEPACE_FRAMETIME, "framepace::frametime", 20)
                .with_suffix("ms"),
        );
        diagnostics.add(
            Diagnostic::new(Self::FRAMEPACE_OVERSLEEP, "framepace::os_oversleep", 20)
                .with_suffix("µs"),
        );
        diagnostics
            .add(Diagnostic::new(Self::FRAMEPACE_ERROR, "framepace::error", 20).with_suffix("ns"));
    }

    /// Updates diagnostic data from measurements
    pub fn diagnostic_system(
        mut diagnostics: ResMut<Diagnostics>,
        time: Res<Time>,
        stats: Res<FramePaceStats>,
    ) {
        if time.delta_seconds_f64() == 0.0 {
            return;
        }

        let frametime_millis = stats.frametime.try_lock().unwrap().as_secs_f64() * 1000.0;
        let oversleep_lock = stats.oversleep.try_lock().unwrap();
        let oversleep_micros = oversleep_lock
            .front()
            .map(|v| v.as_secs_f64())
            .unwrap_or(0.0)
            * 1000000.0;
        let error_nanos = *stats.error.try_lock().unwrap() * 1000000000.0;

        diagnostics.add_measurement(Self::FRAMEPACE_FRAMETIME, || frametime_millis);
        diagnostics.add_measurement(Self::FRAMEPACE_OVERSLEEP, || oversleep_micros);
        diagnostics.add_measurement(Self::FRAMEPACE_ERROR, || error_nanos);
    }
}