1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
use bevy::ecs::system::SystemParam;
use bevy::prelude::*;
use std::marker::PhantomData;
use std::sync::atomic::Ordering::Relaxed;
use std::{collections::BinaryHeap, sync::atomic::AtomicU32};

pub trait PriorityEvent: Send + Sync + 'static {}
impl<E: Send + Sync + 'static> PriorityEvent for E {}

#[derive(Debug)]
struct EventInstance<E> {
    prio: u32,
    event_id: u32,
    event: E,
}

impl<E> EventInstance<E> {
    fn new(event: E, prio: u32) -> Self {
        static COUNTER: AtomicU32 = AtomicU32::new(0);

        Self {
            prio,
            event_id: COUNTER.fetch_add(1, Relaxed),
            event,
        }
    }
}

impl<E> PartialEq for EventInstance<E> {
    fn eq(&self, other: &Self) -> bool {
        self.prio == other.prio && self.event_id == other.event_id
    }
}
impl<E> Eq for EventInstance<E> {}

impl<E> Ord for EventInstance<E> {
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        match self.prio.cmp(&other.prio) {
            std::cmp::Ordering::Equal => self.event_id.cmp(&other.event_id),
            v => v,
        }
        .reverse()
    }
}
impl<E> PartialOrd for EventInstance<E> {
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        Some(self.cmp(other))
    }
}

impl<E: Clone> Clone for EventInstance<E> {
    fn clone(&self) -> Self {
        Self {
            prio: self.prio,
            event_id: self.event_id,
            event: self.event.clone(),
        }
    }
}

/// An event priority queue.
/// Used when the ordering of events should be influenced by other factors.
/// This implementation does NOT provide double buffering.
/// Writers and readers are expected to remove events as soon as they are read,
/// this implies a one to one mapping between events and event handlers.
#[derive(Debug, Resource)]
pub struct PriorityEvents<E> {
    events: BinaryHeap<EventInstance<E>>,
}

impl<E> Default for PriorityEvents<E> {
    fn default() -> Self {
        Self {
            events: BinaryHeap::new(),
        }
    }
}

#[derive(SystemParam)]
pub struct PriorityEventReader<'w, 's, E: PriorityEvent> {
    events: ResMut<'w, PriorityEvents<E>>,
    #[system_param(ignore)]
    marker: PhantomData<&'s usize>,
}

pub struct PriorityIterator<'w, E: PriorityEvent> {
    min: u32,
    max: u32,
    events: &'w mut PriorityEvents<E>,
}

impl<'w, E: PriorityEvent> Iterator for PriorityIterator<'w, E> {
    type Item = E;

    fn next(&mut self) -> Option<Self::Item> {
        while let Some(e) = self.events.events.peek() {
            if e.prio > self.min {
                return None;
            } else if e.prio < self.max {
                // discard events which should have already run
                self.events.events.pop();
            } else {
                break;
            };
        }

        self.events.events.pop().map(|e| e.event)
    }
}

impl<'s, E: PriorityEvent> PriorityEventReader<'_, 's, E> {
    /// Iterates over events this reader has not seen yet, while also clearing them.
    /// Will not remove any events of priority lower than min (0 is highest, inf is lowest)
    /// but will discard events of higher priority
    /// i.e. will handle events in the priority range [min,max] (inclusive)
    pub fn iter_prio_range(&mut self, max: u32, min: u32) -> impl Iterator<Item = E> + '_ {
        PriorityIterator {
            min,
            max,
            events: self.events.as_mut(),
        }
    }

    /// Determines the number of events available to be read, without consuming any
    pub fn len(&self) -> usize {
        self.events.events.len()
    }

    /// Determines if there are any events to be read, without consuming any.
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }
}

#[derive(SystemParam)]
pub struct PriorityEventWriter<'w, 's, E: PriorityEvent> {
    events: ResMut<'w, PriorityEvents<E>>,

    #[system_param(ignore)]
    marker: PhantomData<&'s usize>,
}

impl<'w, 's, E: PriorityEvent> PriorityEventWriter<'w, 's, E> {
    pub fn send(&mut self, event: E, prio: u32) {
        self.events.events.push(EventInstance::new(event, prio));
    }

    pub fn send_batch(&mut self, events: impl Iterator<Item = E>, prio: u32) {
        self.events
            .events
            .extend(events.map(|v| EventInstance::new(v, prio)))
    }

    pub fn send_default(&mut self, prio: u32)
    where
        E: Default,
    {
        self.events
            .events
            .push(EventInstance::new(E::default(), prio))
    }
}

/// a convenience for initialising prioritised event types
pub trait AddPriorityEvent {
    fn add_priority_event<E: PriorityEvent>(&mut self) -> &mut Self;
}

impl AddPriorityEvent for App {
    fn add_priority_event<E: PriorityEvent>(&mut self) -> &mut Self {
        self.init_resource::<PriorityEvents<E>>();

        self
    }
}

#[cfg(test)]
mod tests {
    use bevy::{ecs::system::SystemState, prelude::World};

    use super::*;

    #[derive(Copy, Clone, PartialEq, Eq, Debug)]
    struct TestEvent(usize);

    fn collect_events<E: Copy>(events: BinaryHeap<EventInstance<E>>) -> Vec<E> {
        events
            .into_sorted_vec()
            .iter()
            .map(|e| e.event)
            .rev()
            .collect()
    }

    #[test]
    fn test_events() {
        let mut world = World::new();
        let mut state_writer: SystemState<PriorityEventWriter<TestEvent>> =
            SystemState::new(&mut world);
        let mut state_reader: SystemState<PriorityEventReader<TestEvent>> =
            SystemState::new(&mut world);

        world.init_resource::<PriorityEvents<TestEvent>>();

        // stage 1

        {
            let mut w = state_writer.get_mut(&mut world);

            // system writes three events, out of order
            w.send(TestEvent(0), 5);
            w.send(TestEvent(1), 1);
            w.send(TestEvent(2), 0);
        }

        // events are send and ordered in decreasing priority order
        assert_eq!(
            collect_events(world.resource::<PriorityEvents<TestEvent>>().events.clone()),
            vec![TestEvent(2), TestEvent(1), TestEvent(0)]
        );

        // stage 2

        {
            let mut w = state_reader.get_mut(&mut world);

            // system reads only top event
            w.iter_prio_range(0, 0).for_each(drop);
        }

        // first event is consumed immediately
        assert_eq!(
            collect_events(world.resource::<PriorityEvents<TestEvent>>().events.clone()),
            vec![TestEvent(1), TestEvent(0)]
        );

        // stage 3

        {
            let mut w = state_reader.get_mut(&mut world);

            // system reads all events
            w.iter_prio_range(1, 5).for_each(drop);
        }

        // first event is consumed immediately
        assert_eq!(
            collect_events(world.resource::<PriorityEvents<TestEvent>>().events.clone()),
            Vec::default()
        );
    }

    #[test]
    fn test_not_cleared_events() {
        let mut world = World::new();
        let mut state_writer: SystemState<PriorityEventWriter<TestEvent>> =
            SystemState::new(&mut world);
        let mut state_reader: SystemState<PriorityEventReader<TestEvent>> =
            SystemState::new(&mut world);

        world.init_resource::<PriorityEvents<TestEvent>>();

        // two systems run at different frequencies, both serve non-overlapping priorities

        // stage 1
        // system sends events of lower priority than it serves
        {
            let mut w = state_writer.get_mut(&mut world);

            w.send(TestEvent(0), 1);
        }
        {
            let mut w = state_reader.get_mut(&mut world);

            w.iter_prio_range(0, 0).for_each(drop);
        }

        assert_eq!(
            collect_events(world.resource::<PriorityEvents<TestEvent>>().events.clone()),
            vec![TestEvent(0)]
        );

        // stage 2
        // same system runs writes another of the same event

        {
            let mut w = state_writer.get_mut(&mut world);

            w.send(TestEvent(0), 1);
        }
        {
            let mut w = state_reader.get_mut(&mut world);

            w.iter_prio_range(0, 0).for_each(drop);
        }

        assert_eq!(
            collect_events(world.resource::<PriorityEvents<TestEvent>>().events.clone()),
            vec![TestEvent(0), TestEvent(0)]
        );

        // stage 3
        // this time another system runs clearing those events
        {
            let mut w = state_reader.get_mut(&mut world);

            w.iter_prio_range(1, 1).for_each(drop);
        }
        assert_eq!(
            collect_events(world.resource::<PriorityEvents<TestEvent>>().events.clone()),
            Vec::default()
        );
    }

    #[test]
    fn test_higher_prio_destroyed() {
        let mut world = World::new();
        let mut state_writer: SystemState<PriorityEventWriter<TestEvent>> =
            SystemState::new(&mut world);
        let mut state_reader: SystemState<PriorityEventReader<TestEvent>> =
            SystemState::new(&mut world);

        world.init_resource::<PriorityEvents<TestEvent>>();

        // two systems run at different frequencies, both serve non-overlapping priorities

        // stage 1
        // system sends events of higher priority than another serves
        {
            let mut w = state_writer.get_mut(&mut world);

            w.send(TestEvent(0), 0);
        }

        // stage 2
        // system receives event of higher priority than it serves
        {
            let mut w = state_reader.get_mut(&mut world);

            // event is not read but discarded
            assert_eq!(
                w.iter_prio_range(1, 1).collect::<Vec<TestEvent>>(),
                Vec::default()
            );
        }

        // the event is cleared
        assert_eq!(
            collect_events(world.resource::<PriorityEvents<TestEvent>>().events.clone()),
            vec![]
        );
    }

    #[test]
    fn test_prio_range() {
        let mut world = World::new();
        let mut state_writer: SystemState<PriorityEventWriter<TestEvent>> =
            SystemState::new(&mut world);
        let mut state_reader: SystemState<PriorityEventReader<TestEvent>> =
            SystemState::new(&mut world);

        world.init_resource::<PriorityEvents<TestEvent>>();

        // two systems run at different frequencies, both serve non-overlapping priorities

        // stage 1
        // system sends events of various priorities
        {
            let mut w = state_writer.get_mut(&mut world);

            w.send(TestEvent(0), 0);
            w.send(TestEvent(1), 1);
            w.send(TestEvent(2), 2);
            w.send(TestEvent(3), 3);
            w.send(TestEvent(4), 4);
            w.send(TestEvent(5), 5);
        }

        // stage 2
        // multiple systems in order of priority remove them one by one
        {
            let mut w = state_reader.get_mut(&mut world);

            assert_eq!(
                w.iter_prio_range(0, 1).collect::<Vec<TestEvent>>(),
                vec![TestEvent(0), TestEvent(1)]
            );

            assert_eq!(
                w.iter_prio_range(2, 2).collect::<Vec<TestEvent>>(),
                vec![TestEvent(2)]
            );

            assert_eq!(
                w.iter_prio_range(3, 3).collect::<Vec<TestEvent>>(),
                vec![TestEvent(3)]
            );

            // 4 is discarded
            assert_eq!(
                w.iter_prio_range(5, 5).collect::<Vec<TestEvent>>(),
                vec![TestEvent(5)]
            );
        }

        // the events are all cleared
        assert_eq!(
            collect_events(world.resource::<PriorityEvents<TestEvent>>().events.clone()),
            vec![]
        );
    }
}