1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
use std::time::Duration;
use bevy::ecs::system::EntityCommands;
use bevy::prelude::*;
use crate::subservient_sensors::TnuaSubservientSensor;
use crate::util::SegmentedJumpInitialVelocityCalculator;
use crate::{
TnuaMotor, TnuaPipelineStages, TnuaProximitySensor, TnuaRigidBodyTracker, TnuaSystemSet,
TnuaUserControlsSystemSet, TnuaVelChange,
};
pub struct TnuaPlatformerPlugin;
/// The main for supporting platformer-like controls.
///
/// It's called "platformer", but it can also be used for other types of games, like shooters. It
/// won't work very well for vehicle controls though.
impl Plugin for TnuaPlatformerPlugin {
fn build(&self, app: &mut App) {
app.register_type::<TnuaPlatformerConfig>();
app.register_type::<TnuaFreeFallBehavior>();
app.configure_sets(
(
TnuaPipelineStages::Sensors,
TnuaPipelineStages::SubservientSensors,
TnuaUserControlsSystemSet,
TnuaPipelineStages::Logic,
TnuaPipelineStages::Motors,
)
.chain()
.in_set(TnuaSystemSet),
);
app.add_system(platformer_control_system.in_set(TnuaPipelineStages::Logic));
app.add_system(
handle_keep_crouching_below_obstacles.in_set(TnuaPipelineStages::SubservientSensors),
);
}
}
/// All the Tnua components needed for a platformer-like character controller.
///
/// Note that:
///
/// * While this bundle has a default which provides a workable setting for
/// [`TnuaPlatformerConfig`], this is only done so that this bundle can be created with the
/// `..Default::default()` syntax. Users are expected to use provide their own
/// [`TnuaPlatformerConfig`], customized for the specific game they are making.
///
/// * This bundle only contains components defined by Tnua. Rapier controllers need to be added
/// manually.
///
/// * That this does not include optional components like [`TnuaManualTurningOutput`] or
/// [`TnuaPlatformerAnimatingOutput`].
#[derive(Bundle)]
pub struct TnuaPlatformerBundle {
pub config: TnuaPlatformerConfig,
pub controls: TnuaPlatformerControls,
pub motor: TnuaMotor,
pub rigid_body_tracker: TnuaRigidBodyTracker,
pub proximity_sensor: TnuaProximitySensor,
pub state: TnuaPlatformerState,
}
impl Default for TnuaPlatformerBundle {
fn default() -> Self {
Self {
config: TnuaPlatformerConfig {
full_speed: 20.0,
full_jump_height: 4.0,
up: Vec3::Y,
forward: -Vec3::Z,
float_height: 2.0,
cling_distance: 1.0,
spring_strengh: 400.0,
spring_dampening: 1.2,
acceleration: 60.0,
air_acceleration: 20.0,
coyote_time: 0.15,
jump_input_buffer_time: 0.2,
held_jump_cooldown: None,
upslope_jump_extra_gravity: 30.0,
jump_takeoff_extra_gravity: 30.0,
jump_takeoff_above_velocity: 2.0,
jump_fall_extra_gravity: 20.0,
jump_shorten_extra_gravity: 60.0,
jump_peak_prevention_at_upward_velocity: 1.0,
jump_peak_prevention_extra_gravity: 20.0,
free_fall_behavior: TnuaFreeFallBehavior::LikeJumpShorten,
tilt_offset_angvel: 5.0,
tilt_offset_angacl: 500.0,
turning_angvel: 10.0,
height_change_impulse_for_duration: 0.02,
height_change_impulse_limit: 40.0,
},
controls: Default::default(),
motor: Default::default(),
rigid_body_tracker: Default::default(),
proximity_sensor: Default::default(),
state: Default::default(),
}
}
}
/// Movement settings for a platformer-like character controlled by Tnua.
#[derive(Component, Reflect)]
pub struct TnuaPlatformerConfig {
/// The speed the character will try to reach when
/// [`desired_velocity`](TnuaPlatformerControls::desired_velocity) is set to a unit vector.
///
/// If `desired_velocity` is not a unit vector, the character will try to reach a speed of
/// `desired_velocity.length() * `full_speed`. Note that this means that if `desired_velocity`
/// has a magnitude greater than `1.0`, the character may exceed its full speed.
pub full_speed: f32,
/// The height the character will jump to when [`jump`](TnuaPlatformerControls::jump) is set to
/// `Some(`1.0`)`.
///
/// If `jump` is set to `Some(X)` where `X` is not `1.0`, the character will try to jump to an
/// height of `X * full_jump_height`. Note that this means that if `X` is greater than `1.0`,
/// the character may jump higher than its full jump height.
///
/// If [`jump_shorten_extra_gravity`](Self::jump_shorten_extra_gravity) is higher than `0.0`,
/// the character may stop the jump in the middle if `jump` is set to `None` (usually when the
/// player releases the jump button) and the character may not reach its full jump height.
///
/// The jump height is calculated from the center of the character at
/// [`float_height`](Self::float_height) to the center of the character at the top of the jump.
/// It _does not_ mean the height from the ground.
pub full_jump_height: f32,
/// The direction considered as upward.
///
/// Typically `Vec3::Y`.
pub up: Vec3,
/// The direction considered as forward.
///
/// This is the direcetion the character is facing when no rotation is applied. Typically
/// `Vec3::X` for 2D sprites (character turning left) and `-Vec3::Z` for 3D (character model
/// faced in camera's forward direction)
pub forward: Vec3,
/// The height at which the character will float above ground at rest.
///
/// Note that this is the height of the character's center of mass - not the distance from its
/// collision mesh.
pub float_height: f32,
/// Extra distance above the `float_height` where the spring is still in effect.
///
/// When the character is at at most this distance above the `float_height`, the spring force
/// will kick in and move it to the float height - even if that means pushing it down. If the
/// character is above that distance above the `float_height`, Tnua will consider it to be in
/// the air.
pub cling_distance: f32,
/// The force that pushes the character to the float height.
///
/// The actual force applied is in direct linear relationship to the displacement from the
/// `float_height`.
pub spring_strengh: f32,
/// A force that slows down the characters vertical spring motion.
///
/// The actual dampening is in direct linear relationship to the vertical velocity it tries to
/// dampen.
///
/// Note that as this approaches 2.0, the character starts to shake violently and eventually
/// get launched upward at great speed.
pub spring_dampening: f32,
/// The acceleration for horizontal movement.
///
/// Note that this is the acceleration for starting the horizontal motion and for reaching the
/// top speed. When braking or changing direction the acceleration is greater, up to 2 times
/// `acceleration` when doing a 180 turn.
pub acceleration: f32,
/// The acceleration for horizontal movement while in the air.
///
/// Set to 0.0 to completely disable air movement.
pub air_acceleration: f32,
/// The time, in seconds, the character can still jump after losing their footing.
pub coyote_time: f32,
/// A duration, in seconds, where a player can press a jump button before a jump becomes
/// possible (typically when a character is still in the air and about the land) and the jump
/// command would still get registered and be executed once the jump is possible.
pub jump_input_buffer_time: f32,
/// A duration, in seconds, after which the character would jump if the jump button was already
/// pressed when the jump became available.
///
/// The duration is measured from the moment the jump became available - not from the moment
/// the jump button was pressed.
///
/// When set to `None`, the character will not jump no matter how long the player holds the
/// jump button.
///
/// If the jump button is held but the jump input is still buffered (see
/// [`jump_input_buffer_time`](Self::jump_input_buffer_time)), this setting will have no effect
/// because the character will simply jump immediately.
pub held_jump_cooldown: Option<f32>,
/// Extra gravity for breaking too fast jump from running up a slope.
///
/// When running up a slope, the character gets more jump strength to avoid slamming into the
/// slope. This may cause the jump to be too high, so this value is used to brake it.
///
/// **NOTE**: This force will be added to the normal gravity.
pub upslope_jump_extra_gravity: f32,
/// Extra gravity for fast takeoff.
///
/// Without this, jumps feel painfully slow. Adding this will apply extra gravity until the
/// vertical velocity reaches below
/// [`jump_takeoff_above_velocity`](Self::jump_takeoff_above_velocity), and increase the
/// initial jump boost in order to compensate. This will make the jump feel more snappy.
pub jump_takeoff_extra_gravity: f32,
/// The range of upward velocity during
/// [`jump_takeoff_extra_gravity`](Self::jump_takeoff_extra_gravity) is applied.
///
/// To disable, set this to [`f32::INFINITY`] rather than zero.
pub jump_takeoff_above_velocity: f32,
/// Extra gravity for falling down after reaching the top of the jump.
///
/// **NOTE**: This force will be added to the normal gravity.
pub jump_fall_extra_gravity: f32,
/// Extra gravity for shortening a jump when the player releases the jump button.
///
/// **NOTE**: This force will be added to the normal gravity.
pub jump_shorten_extra_gravity: f32,
/// Used to decrease the time the character spends "floating" at the peak of the jump.
///
/// When the character's upward velocity is above this value,
/// [`jump_peak_prevention_extra_gravity`](Self::jump_peak_prevention_extra_gravity) will be
/// added to the gravity in order to shorten the float time.
///
/// This extra gravity is taken into account when calculating the initial jump speed, so the
/// character is still supposed to reach its [`full_jump_height`](Self::full_jump_height).
pub jump_peak_prevention_at_upward_velocity: f32,
/// Extra gravity for decreasing the time the character spends at the peak of the jump.
///
/// **NOTE**: This force will be added to the normal gravity.
pub jump_peak_prevention_extra_gravity: f32,
/// What to do when the character is in the air without jumping (e.g. when stepping off a
/// ledge)
///
/// **NOTE**: Depending on this setting, the character may be able to run up a slope and "jump"
/// potentially even higher than a regular jump, even without pressing the jump button. See the
/// documentation for the individual enum variants for information regarding how to prevent
/// this.
pub free_fall_behavior: TnuaFreeFallBehavior,
/// The maximum angular velocity used for keeping the character standing upright.
///
/// NOTE: The character's rotation can also be locked to prevent it from being tilted, in which
/// case this paramter is redundant and can be set to 0.0.
pub tilt_offset_angvel: f32,
/// The maximum angular acceleration used for reaching `tilt_offset_angvel`.
///
/// NOTE: The character's rotation can also be locked to prevent it from being tilted, in which
/// case this paramter is redundant and can be set to 0.0.
pub tilt_offset_angacl: f32,
/// The maximum angular velocity used for turning the character when the direction changes.
pub turning_angvel: f32,
/// A duration, in seconds, that it should take for the character to change its floating height
/// when the [`float_height_offset`](TnuaPlatformerControls::float_height_offset) control
/// field is changed.
///
/// Set this to more than the expected duration of a single frame, so that the character will
/// some distance for the [`spring_dampening`](Self::spring_dampening) force to reduce its
/// vertical velocity.
pub height_change_impulse_for_duration: f32,
/// The maximum impulse to apply when
/// [`float_height_offset`](TnuaPlatformerControls::float_height_offset) control field is
/// changed.
pub height_change_impulse_limit: f32,
}
#[derive(Debug, Reflect)]
pub enum TnuaFreeFallBehavior {
/// Apply extra gravitiy during free fall.
///
/// **NOTE**: This force will be added to the normal gravity.
///
/// **NOTE**: If the parameter set to this option is too low, the character may be able to run
/// up a slope and "jump" potentially even higher than a regular jump, even without pressing
/// the jump button.
ExtraGravity(f32),
/// Treat free fall like jump shortening.
///
/// This means that as long as the character has an upward velocity
/// [`jump_shorten_extra_gravity`](TnuaPlatformerConfig::jump_shorten_extra_gravity) will be in
/// effect, and after the character's vertical velocity turns downward
/// [`jump_fall_extra_gravity`](TnuaPlatformerConfig::jump_fall_extra_gravity) will take over.
///
/// **NOTE**: If
/// [`jump_shorten_extra_gravity`](TnuaPlatformerConfig::jump_shorten_extra_gravity) is too
/// low, the character may be able to run up a slope and "jump" potentially even higher than a
/// regular jump, even without pressing the jump button.
LikeJumpShorten,
/// Treat free fall like falling after a jump.
///
/// This means that ['jump_fall_extra_gravity'](TnuaPlatformerConfig::jump_fall_extra_gravity)
/// will take effect immediately when the character starts a free fall, even if they have
/// upward velocity.
///
/// **NOTE**: If [`jump_fall_extra_gravity`](TnuaPlatformerConfig::jump_fall_extra_gravity) is
/// too low, the character may be able to run up a slope and "jump" potentially even higher
/// than a regular jump, even without pressing the jump button.
LikeJumpFall,
}
/// Edit this component in a system to control the character.
///
/// Tnua does not write to `TnuaPlatformerControls` - only reads from it - so it should be updated
/// every frame.
///
/// ```no_run
/// # use bevy::prelude::*;
/// # use bevy_tnua::{TnuaPlatformerControls};
/// fn player_control_system(mut query: Query<&mut TnuaPlatformerControls>) {
/// for mut controls in query.iter_mut() {
/// *controls = TnuaPlatformerControls {
/// desired_velocity: Vec3::X, // always go right for some reason
/// desired_forward: -Vec3::X, // face backwards from walking direction
/// jump: None, // no jumping
/// float_height_offset: 0.0, // not crouching,
/// };
/// }
/// }
/// ```
#[derive(Component)]
pub struct TnuaPlatformerControls {
/// The direction to go in, in the world space, as a fraction of the
/// [`full_speed`](TnuaPlatformerConfig::full_speed) (so a lenght of 1 is full speed)
///
/// Tnua assumes that this vector is orthogonal to the [`up`](TnuaPlatformerConfig::up) vector.
pub desired_velocity: Vec3,
/// If non-zero, Tnua will rotate the character to face in that direction.
///
/// Tnua assumes that this vector is orthogonal to the [`up`](TnuaPlatformerConfig::up) vector.
pub desired_forward: Vec3,
/// Instructs the character to jump. The number is a fraction of the
/// [`full_jump_height`](TnuaPlatformerConfig::full_jump_height) (so a height of 1 is full
/// height)
///
/// For variable height jumping based on button press length, don't bother calculating the
/// number - just set this to `Some(1.0)` and let Tnua handle the variable height with the
/// [`jump_shorten_extra_gravity`](TnuaPlatformerConfig::jump_shorten_extra_gravity) setting
/// (which should be hight than 0 to support this). Only set it to a number lower or higher
/// than 1 if the height is calculated on something like an analog button press strenght or an
/// AI that needs to decide exactly how high to jump.
pub jump: Option<f32>,
/// An offset from the regular float height. Setting this to a negative number will make the
/// character crouch.
///
/// To prevent the character from standing up while under a low ceiling, use
/// [`TnuaKeepCrouchingBelowObstacles`].
///
/// Prefer this over manipulating [`float_height`](TnuaPlatformerConfig::float_height) during
/// gameplay, because:
/// * Changing `float_height_offset` will make the transition between float heights faster by
/// applying a one shot boost impulse (can be configured with the
/// [`height_change_impulse_for_duration`](TnuaPlatformerConfig::height_change_impulse_for_duration)
/// and [`height_change_impulse_limit`](TnuaPlatformerConfig::height_change_impulse_limit)
/// settings) when `float_height_offset` changes.
/// * When `float_height_offset` is negative, the raycast will still reach the same lenght as
/// it would for the base float height. This means that
/// [`cling_distance`](TnuaPlatformerConfig::cling_distance) does not need to be big enough
/// to cover the crouch offset.
pub float_height_offset: f32,
}
impl Default for TnuaPlatformerControls {
fn default() -> Self {
Self {
desired_velocity: Vec3::ZERO,
desired_forward: Vec3::ZERO,
jump: None,
float_height_offset: 0.0,
}
}
}
#[doc(hidden)]
#[derive(Component, Default, Debug)]
pub struct TnuaPlatformerState {
jump_command_state: JumpCommandState,
jump_state: JumpState,
standing_on: Option<StandingOnState>,
prev_float_height_offset: f32,
}
#[derive(Default, Debug)]
enum JumpCommandState {
#[default]
Unissued,
Consumed,
Buffered(Timer),
Cooldown(Timer),
}
#[derive(Default, Debug)]
enum JumpState {
#[default]
NoJump,
FreeFall {
coyote_time: Timer,
},
StartingJump {
/// The potential energy at the top of the jump, when:
/// * The potential energy at the bottom of the jump is defined as 0
/// * The mass is 1
/// Calculating the desired velocity based on energy is easier than using the ballistic
/// formulas.
desired_energy: f32,
coyote_time: Timer,
},
SlowDownTooFastSlopeJump {
desired_energy: f32,
zero_potential_energy_at: Vec3,
},
MaintainingJump,
StoppedMaintainingJump {
coyote_time: Timer,
},
FallSection {
coyote_time: Timer,
},
}
#[derive(Debug)]
struct StandingOnState {
entity: Entity,
entity_linvel: Vec3,
}
/// If added as component, Tnua will update its `forward` field instead of rotating the rigid body.
///
/// This is useful for controlling the rotation via a system - e.g. when working with 2D and the
/// physics engine cannot handle the rotation, so it should be done with a sprite animation
/// instead.
#[derive(Component, Default)]
pub struct TnuaManualTurningOutput {
pub forward: Vec3,
}
/// If added as component, Tnua will update its fields so that they can used to decide which
/// animation to play and at which speed.
///
/// See [`TnuaAnimatingState`](crate::TnuaAnimatingState) for usage example.
#[derive(Component, Default)]
pub struct TnuaPlatformerAnimatingOutput {
/// The current running velocity on a plane orthogonal to the [`up`](TnuaPlatformerConfig::up)
/// vector.
pub running_velocity: Vec3,
/// The current jumping velocity on the [`up`](TnuaPlatformerConfig::up), or `None` if the
/// character is not currently jumping.
pub jumping_velocity: Option<f32>,
/// When the character is standing, this is the offset from the configured
/// [`float_height`](TnuaPlatformerConfig::float_height).
///
/// Note that this value does not take the
/// [`float_height_offset`](TnuaPlatformerControls::float_height_offset) control field into
/// account. This means that the value of `standing_offset` should be close to that of
/// `float_height_offset` (after the transition time, of course), and can be used to determine
/// if the character is standing or crouching.
pub standing_offset: f32,
}
#[allow(clippy::type_complexity)]
fn platformer_control_system(
time: Res<Time>,
mut query: Query<(
&GlobalTransform,
&TnuaPlatformerControls,
&TnuaPlatformerConfig,
&mut TnuaPlatformerState,
&TnuaRigidBodyTracker,
&mut TnuaProximitySensor,
Option<&TnuaKeepCrouchingBelowObstacles>,
&mut TnuaMotor,
Option<&mut TnuaManualTurningOutput>,
Option<&mut TnuaPlatformerAnimatingOutput>,
)>,
) {
let frame_duration = time.delta().as_secs_f32();
if frame_duration == 0.0 {
return;
}
for (
transform,
controls,
config,
mut platformer_state,
tracker,
mut sensor,
keep_crouching,
mut motor,
manual_turning_output,
mut animating_output,
) in query.iter_mut()
{
match &mut platformer_state.jump_state {
JumpState::NoJump
| JumpState::MaintainingJump
| JumpState::SlowDownTooFastSlopeJump {
desired_energy: _,
zero_potential_energy_at: _,
} => {}
JumpState::FreeFall { coyote_time }
| JumpState::StartingJump {
desired_energy: _,
coyote_time,
}
| JumpState::StoppedMaintainingJump { coyote_time }
| JumpState::FallSection { coyote_time } => {
coyote_time.tick(time.delta());
}
}
let (_, rotation, translation) = transform.to_scale_rotation_translation();
let float_height_offset = if let Some(keep_crouching) = keep_crouching {
controls
.float_height_offset
.min(keep_crouching.force_crouching_to_height)
} else {
controls.float_height_offset
};
sensor.cast_range =
config.float_height + config.cling_distance + float_height_offset.max(0.0);
struct ClimbVectors {
direction: Vec3,
sideways: Vec3,
}
impl ClimbVectors {
fn project(&self, vector: Vec3) -> Vec3 {
let axis_direction = vector.dot(self.direction) * self.direction;
let axis_sideways = vector.dot(self.sideways) * self.sideways;
axis_direction + axis_sideways
}
}
let effective_velocity: Vec3;
let climb_vectors: Option<ClimbVectors>;
let considered_in_air: bool;
let impulse_to_offset: Vec3;
if let Some(sensor_output) = &sensor.output {
effective_velocity = tracker.velocity - sensor_output.entity_linvel;
let sideways_unnormalized = sensor_output.normal.cross(config.up);
if sideways_unnormalized == Vec3::ZERO {
climb_vectors = None;
} else {
climb_vectors = Some(ClimbVectors {
direction: sideways_unnormalized
.cross(sensor_output.normal)
.normalize_or_zero(),
sideways: sideways_unnormalized.normalize_or_zero(),
});
}
considered_in_air = match platformer_state.jump_state {
JumpState::NoJump => false,
JumpState::FreeFall { .. } => true,
JumpState::StartingJump { .. } => false,
JumpState::SlowDownTooFastSlopeJump { .. } => true,
JumpState::MaintainingJump => true,
JumpState::StoppedMaintainingJump { .. } => true,
JumpState::FallSection { .. } => true,
};
if considered_in_air {
impulse_to_offset = Vec3::ZERO;
} else if let Some(standing_on_state) = &platformer_state.standing_on {
if standing_on_state.entity != sensor_output.entity {
impulse_to_offset = Vec3::ZERO;
} else {
impulse_to_offset =
sensor_output.entity_linvel - standing_on_state.entity_linvel;
}
} else {
impulse_to_offset = Vec3::ZERO;
}
} else {
effective_velocity = tracker.velocity;
climb_vectors = None;
considered_in_air = true;
impulse_to_offset = Vec3::ZERO;
}
let effective_velocity = effective_velocity + impulse_to_offset;
let upward_velocity = config.up.dot(effective_velocity);
let velocity_on_plane = effective_velocity - config.up * upward_velocity;
let desired_velocity = controls.desired_velocity * config.full_speed;
let exact_acceleration = desired_velocity - velocity_on_plane;
let safe_direction_coefficient = desired_velocity
.normalize_or_zero()
.dot(velocity_on_plane.normalize_or_zero());
let direction_change_factor = 1.5 - 0.5 * safe_direction_coefficient;
let relevant_acceleration_limit = if considered_in_air {
config.air_acceleration
} else {
config.acceleration
};
let acceleration = direction_change_factor * relevant_acceleration_limit;
let walk_acceleration = exact_acceleration.clamp_length_max(frame_duration * acceleration);
let walk_acceleration = if let Some(climb_vectors) = &climb_vectors {
climb_vectors.project(walk_acceleration)
} else {
walk_acceleration
};
let vertical_velocity = if let Some(climb_vectors) = &climb_vectors {
effective_velocity.dot(climb_vectors.direction) * climb_vectors.direction.dot(config.up)
} else {
0.0
};
// TODO: Do I need maximum force capping?
fn make_finished_timer() -> Timer {
let mut result = Timer::new(Duration::ZERO, TimerMode::Once);
result.tick(Duration::ZERO);
result
}
let jump_command_can_be_fired = match &mut platformer_state.jump_command_state {
JumpCommandState::Unissued => true,
JumpCommandState::Consumed => false,
JumpCommandState::Buffered(timer) => !timer.tick(time.delta()).finished(),
JumpCommandState::Cooldown(timer) => timer.tick(time.delta()).finished(),
};
let should_jump_calc_energy = |can_jump: bool| {
if can_jump && jump_command_can_be_fired {
if let Some(jump_multiplier) = controls.jump {
let jump_height = jump_multiplier * config.full_jump_height;
let mut calculator = SegmentedJumpInitialVelocityCalculator::new(jump_height);
let gravity = tracker.gravity.dot(-config.up);
let kinetic_energy = calculator
// Jump peak prevention segment
.add_segment(
gravity + config.jump_peak_prevention_extra_gravity,
config.jump_peak_prevention_at_upward_velocity,
)
// Regular gravity segment
.add_segment(gravity, config.jump_takeoff_above_velocity)
// Jump takeoff segment
.add_segment(gravity + config.jump_takeoff_extra_gravity, f32::INFINITY)
.kinetic_energy();
Some(kinetic_energy)
} else {
None
}
} else {
None
}
};
let mut standing_offset = 0.0;
let upward_impulse: TnuaVelChange = 'upward_impulse: {
// TODO: Once `std::mem::variant_count` gets stabilized, use that instead. The idea is
// to allow jumping through multiple states but failing if we get into loop.
for _ in 0..7 {
match &mut platformer_state.jump_state {
JumpState::NoJump => {
if let Some(sensor_output) = &sensor.output {
if let Some(desired_energy) = should_jump_calc_energy(true) {
platformer_state.jump_state = JumpState::StartingJump {
desired_energy,
coyote_time: Timer::new(
Duration::from_secs_f32(config.coyote_time),
TimerMode::Once,
),
};
continue;
} else {
let spring_offset = config.float_height - sensor_output.proximity;
standing_offset = -spring_offset;
let spring_offset = spring_offset + float_height_offset;
let spring_force: f32 = spring_offset * config.spring_strengh;
let offset_change_impulse: f32 = if 0.01
<= (float_height_offset
- platformer_state.prev_float_height_offset)
.abs()
{
let velocity_to_get_to_new_float_height =
spring_offset / config.height_change_impulse_for_duration;
velocity_to_get_to_new_float_height.clamp(
-config.height_change_impulse_limit,
config.height_change_impulse_limit,
)
} else {
0.0
};
let relative_velocity =
effective_velocity.dot(config.up) - vertical_velocity;
let dampening_force =
relative_velocity * config.spring_dampening / frame_duration;
let spring_force = spring_force - dampening_force;
let gravity_compensation = -tracker.gravity.dot(config.up);
let spring_impulse =
frame_duration * (spring_force + gravity_compensation);
let impulse_to_use =
if spring_impulse.abs() < offset_change_impulse.abs() {
offset_change_impulse
} else {
spring_impulse
};
// TODO: maybe this needs to be an acceleration rather than an
// impulse? The problem is the comparison between `spring_impulse`
// and `offset_change_impulse`...
break 'upward_impulse TnuaVelChange::boost(
impulse_to_use * config.up,
);
}
} else {
platformer_state.jump_state = JumpState::FreeFall {
coyote_time: Timer::new(
Duration::from_secs_f32(config.coyote_time),
TimerMode::Once,
),
};
continue;
}
}
JumpState::FreeFall { coyote_time } => match config.free_fall_behavior {
TnuaFreeFallBehavior::ExtraGravity(extra_gravity) => {
if sensor.output.is_some() {
platformer_state.jump_state = JumpState::NoJump;
continue;
}
if let Some(desired_energy) = should_jump_calc_energy(true) {
platformer_state.jump_state = JumpState::StartingJump {
desired_energy,
coyote_time: coyote_time.clone(),
};
continue;
}
break 'upward_impulse TnuaVelChange::acceleration(
-extra_gravity * config.up,
);
}
TnuaFreeFallBehavior::LikeJumpShorten => {
platformer_state.jump_state = JumpState::StoppedMaintainingJump {
coyote_time: coyote_time.clone(),
};
continue;
}
TnuaFreeFallBehavior::LikeJumpFall => {
platformer_state.jump_state = JumpState::FallSection {
coyote_time: coyote_time.clone(),
};
continue;
}
},
JumpState::StartingJump {
desired_energy,
coyote_time,
} => {
if let Some(sensor_output) = &sensor.output {
let relative_velocity =
effective_velocity.dot(config.up) - vertical_velocity.max(0.0);
let extra_height = sensor_output.proximity - config.float_height;
let gravity = tracker.gravity.dot(-config.up);
let energy_from_extra_height = extra_height * gravity;
let desired_kinetic_energy = *desired_energy - energy_from_extra_height;
let desired_upward_velocity = (2.0 * desired_kinetic_energy).sqrt();
if config.float_height < sensor_output.proximity {
platformer_state.jump_state = JumpState::SlowDownTooFastSlopeJump {
desired_energy: *desired_energy,
zero_potential_energy_at: translation
- extra_height * config.up,
};
}
break 'upward_impulse TnuaVelChange::boost(
(desired_upward_velocity - relative_velocity) * config.up,
);
} else if !coyote_time.finished() {
let relative_velocity =
effective_velocity.dot(config.up) - vertical_velocity.max(0.0);
let desired_upward_velocity = (2.0 * *desired_energy).sqrt();
platformer_state.jump_state = JumpState::SlowDownTooFastSlopeJump {
desired_energy: *desired_energy,
zero_potential_energy_at: translation,
};
break 'upward_impulse TnuaVelChange::boost(
(desired_upward_velocity - relative_velocity) * config.up,
);
} else {
platformer_state.jump_state = JumpState::SlowDownTooFastSlopeJump {
desired_energy: *desired_energy,
zero_potential_energy_at: translation,
};
continue;
}
}
JumpState::SlowDownTooFastSlopeJump {
desired_energy,
zero_potential_energy_at,
} => {
if upward_velocity <= vertical_velocity {
platformer_state.jump_state = JumpState::FallSection {
coyote_time: make_finished_timer(),
};
continue;
} else if controls.jump.is_none() {
platformer_state.jump_state = JumpState::StoppedMaintainingJump {
coyote_time: make_finished_timer(),
};
continue;
}
let relative_velocity = effective_velocity.dot(config.up);
let extra_height = (translation - *zero_potential_energy_at).dot(config.up);
let gravity = tracker.gravity.dot(-config.up);
let energy_from_extra_height = extra_height * gravity;
let desired_kinetic_energy = *desired_energy - energy_from_extra_height;
let desired_upward_velocity = (2.0 * desired_kinetic_energy).sqrt();
if relative_velocity <= desired_upward_velocity {
platformer_state.jump_state = JumpState::MaintainingJump;
continue;
} else {
let mut extra_gravity = config.upslope_jump_extra_gravity;
if config.jump_takeoff_above_velocity <= relative_velocity {
extra_gravity += config.jump_takeoff_extra_gravity;
}
break 'upward_impulse TnuaVelChange::acceleration(
-extra_gravity * config.up,
);
}
}
JumpState::MaintainingJump => {
let relevant_upwrad_velocity = upward_velocity - vertical_velocity;
if relevant_upwrad_velocity <= 0.0 {
platformer_state.jump_state = JumpState::FallSection {
coyote_time: make_finished_timer(),
};
continue;
} else if relevant_upwrad_velocity
< config.jump_peak_prevention_at_upward_velocity
{
break 'upward_impulse TnuaVelChange::acceleration(
-config.jump_peak_prevention_extra_gravity * config.up,
);
} else if controls.jump.is_none() {
platformer_state.jump_state = JumpState::StoppedMaintainingJump {
coyote_time: make_finished_timer(),
};
continue;
} else if config.jump_takeoff_above_velocity <= relevant_upwrad_velocity {
break 'upward_impulse TnuaVelChange::acceleration(
-config.jump_takeoff_extra_gravity * config.up,
);
}
break 'upward_impulse TnuaVelChange::ZERO;
}
JumpState::StoppedMaintainingJump { coyote_time } => {
if upward_velocity <= 0.0 {
platformer_state.jump_state = JumpState::FallSection {
coyote_time: coyote_time.clone(),
};
continue;
}
if let Some(desired_energy) =
should_jump_calc_energy(!coyote_time.finished())
{
platformer_state.jump_state = JumpState::StartingJump {
desired_energy,
coyote_time: coyote_time.clone(),
};
continue;
}
let extra_gravity = config.jump_shorten_extra_gravity;
let extra_gravity = if config.jump_takeoff_above_velocity <= upward_velocity
{
extra_gravity + config.jump_takeoff_extra_gravity
} else {
extra_gravity
};
break 'upward_impulse TnuaVelChange::acceleration(
-extra_gravity * config.up,
);
}
JumpState::FallSection { coyote_time } => {
if let Some(sensor_output) = &sensor.output {
if sensor_output.proximity <= config.float_height {
platformer_state.jump_state = JumpState::NoJump;
continue;
}
}
if let Some(desired_energy) =
should_jump_calc_energy(!coyote_time.finished())
{
platformer_state.jump_state = JumpState::StartingJump {
desired_energy,
coyote_time: coyote_time.clone(),
};
continue;
}
break 'upward_impulse TnuaVelChange::acceleration(
-config.jump_fall_extra_gravity * config.up,
);
}
}
}
error!("Tnua could not decide on jump state");
TnuaVelChange::ZERO
};
platformer_state.prev_float_height_offset = float_height_offset;
motor.lin = TnuaVelChange::boost(walk_acceleration + impulse_to_offset) + upward_impulse;
if controls.jump.is_some() {
if jump_command_can_be_fired {
match platformer_state.jump_state {
JumpState::StartingJump { .. } | JumpState::MaintainingJump => {
platformer_state.jump_command_state = JumpCommandState::Consumed
}
JumpState::NoJump
| JumpState::FreeFall { .. }
| JumpState::SlowDownTooFastSlopeJump { .. }
| JumpState::StoppedMaintainingJump { .. }
| JumpState::FallSection { .. } => {
if !matches!(
platformer_state.jump_command_state,
JumpCommandState::Buffered(_)
) {
platformer_state.jump_command_state = JumpCommandState::Buffered(
Timer::from_seconds(config.jump_input_buffer_time, TimerMode::Once),
);
}
}
};
} else if matches!(
platformer_state.jump_command_state,
JumpCommandState::Consumed
) {
let make_cooldown = || {
if let Some(cooldown) = config.held_jump_cooldown {
JumpCommandState::Cooldown(Timer::from_seconds(cooldown, TimerMode::Once))
} else {
JumpCommandState::Consumed
}
};
platformer_state.jump_command_state = match &platformer_state.jump_state {
JumpState::NoJump => make_cooldown(),
JumpState::FreeFall { coyote_time }
| JumpState::StoppedMaintainingJump { coyote_time }
| JumpState::FallSection { coyote_time } => {
if coyote_time.finished() {
JumpCommandState::Consumed
} else {
make_cooldown()
}
}
JumpState::StartingJump { .. }
| JumpState::SlowDownTooFastSlopeJump { .. }
| JumpState::MaintainingJump => JumpCommandState::Consumed,
};
}
} else {
platformer_state.jump_command_state = JumpCommandState::Unissued;
}
let torque_to_fix_tilt = {
let tilted_up = rotation.mul_vec3(config.up);
let rotation_required_to_fix_tilt = Quat::from_rotation_arc(tilted_up, config.up);
let desired_angvel = (rotation_required_to_fix_tilt.xyz() / frame_duration)
.clamp_length_max(config.tilt_offset_angvel);
let angular_velocity_diff = desired_angvel - tracker.angvel;
angular_velocity_diff.clamp_length_max(frame_duration * config.tilt_offset_angacl)
};
struct ProjectionPlaneForRotation(Vec3, Vec3);
impl ProjectionPlaneForRotation {
fn from_config(config: &TnuaPlatformerConfig) -> Self {
Self(config.forward, config.up.cross(config.forward))
}
fn project_and_normalize(&self, vector: Vec3) -> Vec2 {
Vec2::new(vector.dot(self.0), vector.dot(self.1)).normalize_or_zero()
}
}
let turn_torque_to_offset = if let Some(mut manual_turning_output) = manual_turning_output {
if manual_turning_output.forward == Vec3::ZERO {
manual_turning_output.forward = if controls.desired_forward == Vec3::ZERO {
config.forward
} else {
controls.desired_forward
}
} else if manual_turning_output.forward != Vec3::ZERO {
let projection = ProjectionPlaneForRotation::from_config(config);
let rotation_to_set_forward = Quat::from_rotation_arc_2d(
projection.project_and_normalize(manual_turning_output.forward),
projection.project_and_normalize(controls.desired_forward),
);
// NOTE: On this 2D plane we projected into, Z is up.
let rotation_along_up_axis = rotation_to_set_forward.xyz().z * std::f32::consts::PI;
let max_rotation_this_frame = frame_duration * config.turning_angvel;
let angvel_along_up_axis =
rotation_along_up_axis.clamp(-max_rotation_this_frame, max_rotation_this_frame);
let rotation = Quat::from_axis_angle(config.up, angvel_along_up_axis);
let new_forward = rotation.mul_vec3(manual_turning_output.forward);
if new_forward.distance_squared(controls.desired_forward) < 0.000_1 {
// Because from_rotation_arc_2d is not accurate for small angles
manual_turning_output.forward = controls.desired_forward;
} else {
manual_turning_output.forward = new_forward;
}
}
0.0
} else {
let torque_to_turn = {
let desired_angvel = if 0.0 < controls.desired_forward.length_squared() {
let projection = ProjectionPlaneForRotation::from_config(config);
let current_forward = rotation.mul_vec3(config.forward);
let rotation_to_set_forward = Quat::from_rotation_arc_2d(
projection.project_and_normalize(current_forward),
projection.project_and_normalize(controls.desired_forward),
);
// NOTE: On this 2D plane we projected into, Z is up.
let rotation_along_up_axis = rotation_to_set_forward.xyz().z;
(rotation_along_up_axis / frame_duration)
.clamp(-config.turning_angvel, config.turning_angvel)
} else {
0.0
};
// NOTE: This is the regular axis system so we used the configured up.
let existing_angvel = tracker.angvel.dot(config.up);
// This is the torque. Should it be clamped by an acceleration? From experimenting with
// this I think it's meaningless and only causes bugs.
desired_angvel - existing_angvel
};
let existing_turn_torque = torque_to_fix_tilt.dot(config.up);
torque_to_turn - existing_turn_torque
};
motor.ang = TnuaVelChange::boost(torque_to_fix_tilt + turn_torque_to_offset * config.up);
let is_airborne = match &platformer_state.jump_state {
JumpState::NoJump => false,
JumpState::SlowDownTooFastSlopeJump { .. } => true,
JumpState::MaintainingJump => true,
JumpState::FreeFall { coyote_time }
| JumpState::StartingJump {
desired_energy: _,
coyote_time,
}
| JumpState::StoppedMaintainingJump { coyote_time }
| JumpState::FallSection { coyote_time } => coyote_time.finished(),
};
if is_airborne {
platformer_state.standing_on = None;
} else if let Some(sensor_output) = &sensor.output {
platformer_state.standing_on = Some(StandingOnState {
entity: sensor_output.entity,
entity_linvel: sensor_output.entity_linvel,
});
}
// NOTE: In cases like Coyote time the `standing_on` will not change.
if let Some(animating_output) = animating_output.as_mut() {
let new_velocity = effective_velocity + motor.lin.boost - impulse_to_offset;
let new_upward_velocity = config.up.dot(new_velocity);
animating_output.running_velocity = new_velocity - config.up * new_upward_velocity;
animating_output.jumping_velocity = is_airborne.then_some(new_upward_velocity);
animating_output.standing_offset = standing_offset;
}
}
}
/// Prevent the character from standing up if the player releases the crouch button while under an
/// obstacle.
///
/// This will create a child entity with a proximity sensor pointed upward. When that sensor senses
/// a ceiling, it will prevent the height offset from increasing - even if the
/// [`float_height_offset`](TnuaPlatformerControls::float_height_offset) control field raises.
#[derive(Component)]
pub struct TnuaKeepCrouchingBelowObstacles {
sensor_entity: Option<Entity>,
detection_height: f32,
modify_sensor: Box<dyn Send + Sync + Fn(&mut EntityCommands)>,
/// The current crouch state of the character. Read it to determine if the character is
/// crawling and thus its speed needs to be reduced.
pub force_crouching_to_height: f32,
}
impl TnuaKeepCrouchingBelowObstacles {
/// Create a new [`TnuaKeepCrouchingBelowObstacles`].
///
/// # Arguments
///
/// * `detection_height`: The distance, from the character's origin, to cast a ray that looks
/// for for a ceiling. Set this to be exactly enough to detect a ceiling that'd prevent
/// standing up when the player is crouched.
/// * `modify_sensor`: A closure that operates on the sensor entity when created. Use it to add
/// a sensor shape, so that the character will not stand up under the edge of the ceiling and
/// may still get stuck trying to stand up.
pub fn new(
detection_height: f32,
modify_sensor: impl 'static + Send + Sync + Fn(&mut EntityCommands),
) -> Self {
Self {
sensor_entity: None,
detection_height,
modify_sensor: Box::new(modify_sensor),
force_crouching_to_height: f32::INFINITY,
}
}
}
fn handle_keep_crouching_below_obstacles(
mut query: Query<(
Entity,
&mut TnuaKeepCrouchingBelowObstacles,
&TnuaPlatformerControls,
)>,
sensors_query: Query<&TnuaProximitySensor, With<TnuaSubservientSensor>>,
mut commands: Commands,
) {
for (owner_entity, mut keep_crouching, controls) in query.iter_mut() {
if let Some(subservient_sensor) = keep_crouching
.sensor_entity
.and_then(|entity| sensors_query.get(entity).ok())
{
if subservient_sensor.output.is_some() {
keep_crouching.force_crouching_to_height = keep_crouching
.force_crouching_to_height
.min(controls.float_height_offset);
} else {
keep_crouching.force_crouching_to_height = f32::INFINITY;
}
} else {
let mut cmd = commands.spawn((
TransformBundle {
..Default::default()
},
TnuaSubservientSensor { owner_entity },
TnuaProximitySensor {
cast_direction: Vec3::Y,
cast_range: keep_crouching.detection_height,
..Default::default()
},
));
cmd.set_parent(owner_entity);
(keep_crouching.modify_sensor)(&mut cmd);
let sensor_entity = cmd.id();
keep_crouching.sensor_entity = Some(sensor_entity);
keep_crouching.force_crouching_to_height = f32::INFINITY;
}
}
}