1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
use crate::command::{BoxedCommand, CommandQueueBuilder, CommandQueueReceiver, CommandQueueSender};
use crate::entity::{AsyncEntity, SpawnAndSendId};
use crate::system::{AsyncIOSystem, AsyncSystem};
use crate::util::{insert_resource, remove_resource};
use crate::wait_for::StartWaitingFor;
use crate::{die, recv_and_yield, CowStr};
use async_channel::Receiver;
use bevy_core::Name;
use bevy_ecs::prelude::*;
use bevy_ecs::system::Command;
use std::fmt;
/// Exposes asynchronous access to the Bevy ECS `World`.
///
/// The easiest way to get an `AsyncWorld` is with `AsyncWorld::from_world()`.
///
/// ## Commands
/// Apply any `Command` asynchronously with `AsyncWorld::apply_command`.
///
/// ## Systems
/// Just like their synchronous variants, asynchronous `System`s must be registered
/// before they can be used. Systems can optionally accept and return values asynchronously
/// if they are registered with `AsyncWorld::register_io_system`.
///
/// ## Entities
/// Spawn entities with the `AsyncWorld::spawn_*` family.
///
/// ## Resources
/// Insert, remove, and wait for resources to exist.
#[derive(Clone, Debug)]
pub struct AsyncWorld(CommandQueueSender);
impl AsyncWorld {
/// Returns a copy of the underlying `CommandQueueSender`.
pub fn sender(&self) -> CommandQueueSender {
self.0.clone()
}
/// Applies the given `Command` to the world.
pub async fn apply<C: Command>(&self, command: C) {
self.0.send_single(BoxedCommand::new(command)).await
}
/// Starts building a `CommandQueue`.
pub fn start_queue(&self) -> CommandQueueBuilder {
CommandQueueBuilder::new(self.sender())
}
/// Registers a `System` and returns an `AsyncSystem` that can be used to run the system on demand.
pub async fn register_system<M>(
&self,
system: impl IntoSystem<(), (), M> + Send,
) -> AsyncSystem {
let system = Box::new(IntoSystem::into_system(system));
AsyncSystem::new(system, self.clone()).await
}
/// Registers a `System` and returns an `AsyncIOSystem` that can be used to run the system on demand
/// while supplying an input value and receiving an output value.
pub async fn register_io_system<I: Send + 'static, O: Send + 'static, M>(
&self,
system: impl IntoSystem<I, O, M> + Send,
) -> AsyncIOSystem<I, O> {
AsyncIOSystem::new(system, self.clone()).await
}
/// Constructs an `AsyncEntity` for the given `Entity`. If the entity does not exist, any operation
/// performed on it will panic.
pub fn entity(&self, id: Entity) -> AsyncEntity {
AsyncEntity::new(id, self.clone())
}
/// Spawns a new `Entity` and returns an `AsyncEntity` that represents it, which can be used
/// to further manipulate the entity.
pub async fn spawn_empty(&self) -> AsyncEntity {
let (command, receiver) = SpawnAndSendId::new_empty();
self.apply(command).await;
let id = recv_and_yield(receiver).await;
AsyncEntity::new(id, self.clone())
}
/// Spawns a new `Entity` with the given `Bundle` and returns an `AsyncEntity` that represents it,
/// which can be used to further manipulate the entity.
pub async fn spawn<B: Bundle>(&self, bundle: B) -> AsyncEntity {
let (command, receiver) = SpawnAndSendId::new(bundle);
self.apply(command).await;
let id = recv_and_yield(receiver).await;
AsyncEntity::new(id, self.clone())
}
/// Spawns a new `Entity` and returns an `AsyncEntity` that represents it, which can be used
/// to further manipulate the entity. This function attaches a bevy `Name` component with the given
/// value.
pub async fn spawn_named(&self, name: impl Into<CowStr> + Send) -> AsyncEntity {
self.spawn(Name::new(name)).await
}
/// Inserts a new resource or updates an existing resource with the given value.
pub async fn insert_resource<R: Resource>(&self, resource: R) {
self.apply(insert_resource(resource)).await;
}
/// Removes the resource of a given type, if it exists.
pub async fn remove_resource<R: Resource>(&self) {
self.apply(remove_resource::<R>()).await;
}
/// Start waiting for the `Resource` of a given type. Returns an `AsyncResource` which can be further
/// waited to receive the value of the resource.
///
/// `AsyncWorld::wait_for_resource().await` is equivalent to
/// `AsyncWorld::start_waiting_for_resource().await.wait().await`.
pub async fn start_waiting_for_resource<R: Resource + Clone>(&self) -> AsyncResource<R> {
let (start_waiting_for, rx) = StartWaitingFor::resource();
self.apply(start_waiting_for).await;
AsyncResource(rx)
}
/// Wait for the `Resource` of a given type. Returns the value of the resource, once it exists.
///
/// `AsyncWorld::wait_for_resource().await` is equivalent to
/// `AsyncWorld::start_waiting_for_resource().await.wait().await`.
pub async fn wait_for_resource<R: Resource + Clone>(&self) -> R {
self.start_waiting_for_resource().await.wait().await
}
/// Send an `Event` to the bevy world.
pub async fn send_event<E: Event>(&self, event: E) {
self.apply(SendEvent(event)).await;
}
/// Start listening for `Event`s coming from the main bevy world.
/// Returns an `AsyncEvents` which can be further waited to receive these events.
///
/// `AsyncWorld::wait_for_event().await` is equivalent to
/// `AsyncWorld::start_waiting_for_events().await.wait().await`.
pub async fn start_waiting_for_events<E: Event + Clone>(&self) -> AsyncEvents<E> {
let (start_waiting_for, rx) = StartWaitingFor::events();
self.apply(start_waiting_for).await;
AsyncEvents(rx)
}
/// Wait for the `Event` of a given type. Returns the value of the event, once it is received.
///
/// `AsyncWorld::wait_for_event().await` is equivalent to
/// `AsyncWorld::start_waiting_for_events().await.wait().await`.
pub async fn wait_for_event<E: Event + Clone>(&self) -> E {
self.start_waiting_for_events().await.wait().await
}
}
impl From<CommandQueueSender> for AsyncWorld {
fn from(sender: CommandQueueSender) -> Self {
Self(sender)
}
}
impl FromWorld for AsyncWorld {
fn from_world(world: &mut World) -> Self {
let (sender, receiver) = async_channel::unbounded();
world.spawn((
CommandQueueReceiver::new(receiver),
Name::new("CommandQueueReceiver"),
));
CommandQueueSender::new(sender).into()
}
}
/// Represents a `Resource` being retrieved.
///
/// The easiest way to get an `AsyncResource` is with `AsyncWorld::start_waiting_for_resource()`.
pub struct AsyncResource<R: Resource>(Receiver<R>);
impl<R: Resource> fmt::Debug for AsyncResource<R> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "AsyncResource(..)")
}
}
impl<R: Resource> AsyncResource<R> {
/// Wait for the `Resource` to exist, and retrieve its value.
pub async fn wait(self) -> R {
recv_and_yield(self.0).await
}
}
struct SendEvent<E: Event>(E);
impl<E: Event> Command for SendEvent<E> {
fn apply(self, world: &mut World) {
world
.send_event(self.0)
.ok_or("failed to send event")
.unwrap_or_else(die);
}
}
/// Represents Bevy `Event`s being received asynchronously
///
/// The easiest way to get an `AsyncEvents` is with `AsyncWorld::start_waiting_for_events()`.
pub struct AsyncEvents<E: Event>(Receiver<E>);
impl<E: Event> fmt::Debug for AsyncEvents<E> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "AsyncEvents(..)")
}
}
impl<E: Event> AsyncEvents<E> {
/// Wait for the an `Event` to be received from the vanilla Bevy world. This function can be called repeatedly
/// to get more events as they are received.
pub async fn wait(&self) -> E {
recv_and_yield(self.0.clone()).await
}
}