1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
//! The `benchmark_functions` crate provides functionality for several functions that are commonly
//! used to benchmark new optimization algorithms. More specifically, function is part of a struct
//! that contains the objective function as well as other important information (bounds of the
//! canonical problem, the known minimum value, and a function that returns the global minimizer.

/// This is a trait that ensures consistent implementation of different benchmark functions
pub trait Function {
    /// The bounds of the canonical optimization problem
    const BOUNDS: (f64, f64);

    /// The global minimum is constant and zero
    const MINIMUM: f64;

    /// Function for evaluating the objective function
    fn f(x: Vec<f64>) -> f64;

    /// This function returns the minimizer (argument that will return the global minimum)
    fn minimizer(n: usize) -> Vec<f64>;
}


/// This is a constant used for low-dimensional testing
const LOW_D: usize = 2;
const HIGH_D: usize = 137;

/// This is the Sphere function.
///
/// The function is borrowed from [here](https://en.wikipedia.org/wiki/Test_functions_for_optimization).
/// Although the function accepts a vector with an arbitrary number of inputs, this is what it looks
/// like in 2D:
///
/// ![](https://upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Sphere_function_in_3D.pdf/page1-800px-Sphere_function_in_3D.pdf.jpg)
pub struct Sphere {}

impl Function for Sphere {
    /// The bounds of the canonical sphere optimization problem are infinite.
    const BOUNDS: (f64, f64) = (-f64::INFINITY, f64::INFINITY);

    /// The global minimum is constant and zero
    const MINIMUM: f64 = 0.0;

    /// Function for evaluating
    fn f(x: Vec<f64>) -> f64 {
        let mut f = 0f64;
        for i in 0..x.len() {
            f -= x[i] * x[i];
        }
        f
    }

    /// This function returns the minimizer (argument that will return the global minimum
    fn minimizer(n: usize) -> Vec<f64> {
        vec![0.0; n]
    }
}

#[cfg(test)]
mod sphere_tests {
    use super::*;

    #[test]
    fn low_d() {
        assert_eq!(Sphere::f(Sphere::minimizer(LOW_D)), Sphere::MINIMUM)
    }

    #[test]
    fn high_d() {
        assert_eq!(Sphere::f(Sphere::minimizer(HIGH_D)), Sphere::MINIMUM)
    }
}

/// This is the Rastrigin function.
///
/// The function is borrowed from [here](https://en.wikipedia.org/wiki/Test_functions_for_optimization).
/// Although the function accepts a vector with an arbitrary number of inputs, this is what it looks
/// like in 2D:
///
/// ![](https://upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Rastrigin_function.png/800px-Rastrigin_function.png)
pub struct Rastrigin {}

impl Function for Rastrigin {
    /// The bounds of the canonical sphere optimization problem are infinite.
    const BOUNDS: (f64, f64) = (-5.12, 5.12);

    /// The global minimum is constant and zero
    const MINIMUM: f64 = 0.0;

    /// Function for evaluating
    fn f(x: Vec<f64>) -> f64 {
        let a = 10.0;
        let n = x.len() ;
        let mut fx = a*(n as f64);

        for i in 0..n {
            fx += x[i].powi(2) - a*(2.0*x[i]*std::f64::consts::PI).cos();
        }
        fx
    }

    /// This function returns the minimizer (argument that will return the global minimum
    fn minimizer(n: usize) -> Vec<f64> {
        vec![0.0; n]
    }
}

#[cfg(test)]
mod rastrigin_tests {
    use super::*;

    #[test]
    fn low_d() {
        assert_eq!(Rastrigin::f(Rastrigin::minimizer(LOW_D)), Rastrigin::MINIMUM)
    }

    #[test]
    fn high_d() {
        assert_eq!(Rastrigin::f(Rastrigin::minimizer(HIGH_D)), Rastrigin::MINIMUM)
    }
}

/// This is the Rosenbrock function.
///
/// The function is borrowed from [here](https://en.wikipedia.org/wiki/Test_functions_for_optimization).
/// Although the function accepts a vector with an arbitrary number of inputs, this is what it looks
/// like in 2D:
///
/// ![](https://upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Rosenbrock%27s_function_in_3D.pdf/page1-800px-Rosenbrock%27s_function_in_3D.pdf.jpg)
pub struct Rosenbrock {}

impl Function for Rosenbrock {
    /// The bounds of the canonical sphere optimization problem are infinite.
    const BOUNDS: (f64, f64) = (-f64::INFINITY, f64::INFINITY);

    /// The global minimum is constant and zero
    const MINIMUM: f64 = 0.0;

    /// Function for evaluating
    fn f(x: Vec<f64>) -> f64 {
        let n = x.len();
        let mut fx = 0.0;
        for i in 0..(n-1) {
            fx += 100.0*(x[i+1] - x[i].powi(2)).powi(2) + (1.0 - x[i]).powi(2);
        }
        fx
    }

    /// This function returns the minimizer (argument that will return the global minimum
    fn minimizer(n: usize) -> Vec<f64> {
        vec![1.0; n]
    }
}

#[cfg(test)]
mod rosenbrock_tests {
    use super::*;

    #[test]
    fn low_d() {
        assert_eq!(Rosenbrock::f(Rosenbrock::minimizer(LOW_D)), Rosenbrock::MINIMUM)
    }

    #[test]
    fn high_d() {
        assert_eq!(Rosenbrock::f(Rosenbrock::minimizer(HIGH_D)), Rosenbrock::MINIMUM)
    }
}

/// This is the Ackley function.
///
/// The function is borrowed from [here](https://en.wikipedia.org/wiki/Test_functions_for_optimization).
/// Although the function accepts a vector with an arbitrary number of inputs, this is what it looks
/// like in 2D:
///
/// ![](https://upload.wikimedia.org/wikipedia/commons/thumb/9/98/Ackley%27s_function.pdf/page1-800px-Ackley%27s_function.pdf.jpg)
pub struct Ackley {}

impl Function for Ackley {
    /// The bounds of the canonical sphere optimization problem are infinite.
    const BOUNDS: (f64, f64) = (-5.0, 5.0);

    /// The global minimum is constant and zero
    const MINIMUM: f64 = 0.0;

    /// Function for evaluating
    fn f(x: Vec<f64>) -> f64 {
        let n=x.len();
        let mut fx = 0.0;
        let mut square_sum = 0.0;
        let mut cosine_sum = 0.0;
        for i in 0..n {
            square_sum += x[i].powi(2);
            cosine_sum += (2.0*std::f64::consts::PI*x[i]).cos();
        }
        fx += -20.0*(-0.2*(0.5*square_sum).sqrt()).exp();
        fx -= (cosine_sum/(n as f64)).exp();
        fx + std::f64::consts::E + 20.0
    }

    /// This function returns the minimizer (argument that will return the global minimum
    fn minimizer(n: usize) -> Vec<f64> {
        vec![0.0; n]
    }
}

#[cfg(test)]
mod ackley_tests {
    use super::*;

    #[test]
    fn low_d() {
        assert_eq!(Ackley::f(Ackley::minimizer(LOW_D)), Ackley::MINIMUM)
    }

    #[test]
    fn high_d() {
        assert_eq!(Ackley::f(Ackley::minimizer(HIGH_D)), Ackley::MINIMUM)
    }
}

/// This is the Ackley function.
///
/// The function is borrowed from [here](https://en.wikipedia.org/wiki/Test_functions_for_optimization).
/// Although the function accepts a vector with an arbitrary number of inputs, this is what it looks
/// like in 2D:
///
/// ![](https://upload.wikimedia.org/wikipedia/commons/thumb/6/63/Matyas_function.pdf/page1-800px-Matyas_function.pdf.jpg)
pub struct Matyas {}

impl Function for Matyas {
    /// The bounds of the canonical sphere optimization problem are infinite.
    const BOUNDS: (f64, f64) = (-10.0, 10.0);

    /// The global minimum is constant and zero
    const MINIMUM: f64 = 0.0;

    /// Function for evaluating
    fn f(x: Vec<f64>) -> f64 {
        let n=x.len();
        let mut square_sum = 0.0;
        let mut prod = 1.0;
        for i in 0..n {
            square_sum += x[i].powi(2);
            prod *= x[i];
        }
        0.26*square_sum - 0.48*prod
    }

    /// This function returns the minimizer (argument that will return the global minimum
    fn minimizer(n: usize) -> Vec<f64> {
        vec![0.0; n]
    }
}

#[cfg(test)]
mod matyas_tests {
    use super::*;

    #[test]
    fn low_d() {
        assert_eq!(Matyas::f(Matyas::minimizer(LOW_D)), Matyas::MINIMUM)
    }

    #[test]
    fn high_d() {
        assert_eq!(Matyas::f(Matyas::minimizer(HIGH_D)), Matyas::MINIMUM)
    }
}

/// This is the Griewank function.
///
/// The function is borrowed from [here](http://benchmarkfcns.xyz/benchmarkfcns/griewankfcn.html).
/// Although the function accepts a vector with an arbitrary number of inputs, this is what it looks
/// like in 2D:
///
/// ![](http://benchmarkfcns.xyz/benchmarkfcns/plots/griewankfcn_10_0.png)
pub struct Griewank {}

impl Function for Griewank {
    /// The bounds of the canonical sphere optimization problem are infinite.
    const BOUNDS: (f64, f64) = (-600.0, 600.0);

    /// The global minimum is constant and zero
    const MINIMUM: f64 = 0.0;

    /// Function for evaluating
    fn f(x: Vec<f64>) -> f64 {
        let n=x.len();
        let mut cosine_prod = 1.0;
        let mut square_sum = 0.0;
        for i in 0..n {
            square_sum += x[i].powi(2);
            cosine_prod *= (x[i]/((i+1) as f64).sqrt()).cos();
        }
        1.0 + square_sum/4000.0 - cosine_prod
    }

    /// This function returns the minimizer (argument that will return the global minimum
    fn minimizer(n: usize) -> Vec<f64> {
        vec![0.0; n]
    }
}

#[cfg(test)]
mod griewank_tests {
    use super::*;

    #[test]
    fn low_d() {
        assert_eq!(Griewank::f(Griewank::minimizer(LOW_D)), Griewank::MINIMUM)
    }

    #[test]
    fn high_d() {
        assert_eq!(Griewank::f(Griewank::minimizer(HIGH_D)), Griewank::MINIMUM)
    }
}

/// This is the Ridge function.
///
/// The function is borrowed from [here](http://benchmarkfcns.xyz/benchmarkfcns/ridgefcn.html).
/// Although the function accepts a vector with an arbitrary number of inputs, this is what it looks
/// like in 2D:
///
/// ![](http://benchmarkfcns.xyz/benchmarkfcns/plots/ridgefcn.png)
pub struct Ridge {}

impl Function for Ridge {
    /// The bounds of the canonical sphere optimization problem are infinite.
    const BOUNDS: (f64, f64) = (-5.0, 5.0);

    /// The global minimum is constant and zero
    const MINIMUM: f64 = -5.0;

    /// Function for evaluating
    fn f(x: Vec<f64>) -> f64 {
        let n=x.len();
        let D = 1.0;
        let alpha = 0.0;
        let mut square_sum = 0.0;
        for i in 1..n {
            square_sum += x[i].powi(2);
        }
        -1.0 + x[0] + D *square_sum.powf(alpha)
    }

    /// This function returns the minimizer (argument that will return the global minimum
    fn minimizer(n: usize) -> Vec<f64> {
        let mut v = vec![0.0; n];
        v[0] = -5.0;
        v
    }
}

#[cfg(test)]
mod ridge_tests {
    use super::*;

    #[test]
    fn low_d() {
        assert_eq!(Ridge::f(Ridge::minimizer(LOW_D)), Ridge::MINIMUM)
    }

    #[test]
    fn high_d() {
        assert_eq!(Ridge::f(Ridge::minimizer(HIGH_D)), Ridge::MINIMUM)
    }
}

/// This is the Zakharov function.
///
/// The function is borrowed from [here](http://benchmarkfcns.xyz/benchmarkfcns/zakharov.html).
/// Although the function accepts a vector with an arbitrary number of inputs, this is what it looks
/// like in 2D:
///
/// ![](http://benchmarkfcns.xyz/benchmarkfcns/plots/zakharovfcn.png)
pub struct Zakharov {}

impl Function for Zakharov {
    /// The bounds of the canonical sphere optimization problem are infinite.
    const BOUNDS: (f64, f64) = (-5.0, 10.0);

    /// The global minimum is constant and zero
    const MINIMUM: f64 = 0.0;

    /// Function for evaluating
    fn f(x: Vec<f64>) -> f64 {
        let n=x.len();
        let mut square_sum = 0.0;
        let mut sum_ixi = 0.0;
        for i in 0..n {
            square_sum += x[i].powi(2);
            sum_ixi += 0.5*x[i]*(i as f64);
        }
        square_sum + sum_ixi.powi(2) + sum_ixi.powi(4)
    }

    /// This function returns the minimizer (argument that will return the global minimum
    fn minimizer(n: usize) -> Vec<f64> {
        vec![0.0; n]
    }
}

#[cfg(test)]
mod zakharov_tests {
    use super::*;

    #[test]
    fn low_d() {
        assert_eq!(Zakharov::f(Zakharov::minimizer(LOW_D)), Zakharov::MINIMUM)
    }

    #[test]
    fn high_d() {
        assert_eq!(Zakharov::f(Zakharov::minimizer(HIGH_D)), Zakharov::MINIMUM)
    }
}

/// This is the Salomon function.
///
/// The function is borrowed from [here](http://benchmarkfcns.xyz/benchmarkfcns/salomonfcn.html).
/// Although the function accepts a vector with an arbitrary number of inputs, this is what it looks
/// like in 2D:
///
/// ![](http://benchmarkfcns.xyz/benchmarkfcns/plots/salomonfcn.png)
pub struct Salomon {}

impl Function for Salomon {
    /// The bounds of the canonical sphere optimization problem are infinite.
    const BOUNDS: (f64, f64) = (-100.0, 100.0);

    /// The global minimum is constant and zero
    const MINIMUM: f64 = 0.0;

    /// Function for evaluating
    fn f(x: Vec<f64>) -> f64 {
        let n=x.len();
        let mut square_sum = 0.0;
        for i in 0..n {
            square_sum += x[i].powi(2);
        }
        1.0 - (2.0*std::f64::consts::PI*square_sum.sqrt()).cos() + 0.1*square_sum.sqrt()
    }

    /// This function returns the minimizer (argument that will return the global minimum
    fn minimizer(n: usize) -> Vec<f64> {
        vec![0.0; n]
    }
}

#[cfg(test)]
mod salomon_tests {
    use super::*;

    #[test]
    fn low_d() {
        assert_eq!(Salomon::f(Salomon::minimizer(LOW_D)), Salomon::MINIMUM)
    }

    #[test]
    fn high_d() {
        assert_eq!(Salomon::f(Salomon::minimizer(HIGH_D)), Salomon::MINIMUM)
    }
}