1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
//! A sparse implementation of a parity check matrix.

use crate::GF2;
use std::cmp::{max, min};

// *******************
// Parity Check Matrix
// *******************

/// A sparse parity check matrix.
#[derive(Debug, PartialEq)]
pub struct ParityCheckMatrix {
    check_ranges: Vec<usize>,
    bit_indices: Vec<usize>,
    n_bits: usize,
}

impl ParityCheckMatrix {
    // *
    // Public methods
    // *

    /// Returns an iterator that yields a slice for each check of `self`.
    ///
    /// # Example
    /// ```
    /// # use::believer::*;
    /// let parity_check = ParityCheckMatrix::new(
    ///     vec![
    ///         vec![0, 1],
    ///         vec![1, 2],
    ///     ],
    ///     3
    /// );
    /// let mut iter = parity_check.checks_iter();
    ///
    /// assert_eq!(iter.next(), parity_check.check(0));
    /// assert_eq!(iter.next(), parity_check.check(1));
    /// assert_eq!(iter.next(), None);
    ///
    /// ```
    pub fn checks_iter(&self) -> ChecksIter {
        ChecksIter {
            matrix: &self,
            active_check: 0,
        }
    }

    /// Returns `Some` slice of the given `check` in `self`. Returns `None` if
    /// `check` is out of bound.
    ///
    /// # Example
    ///
    /// ```
    /// # use believer::*;
    /// let parity_check = ParityCheckMatrix::new(
    ///     vec![
    ///         vec![0, 1],
    ///         vec![1, 2],
    ///     ],
    ///     3
    /// );
    /// let slice = parity_check.check(0).unwrap();
    /// let vector = vec![GF2::B1, GF2::B1, GF2::B0];
    ///
    /// assert_eq!(slice.dot(&vector), GF2::B0);
    /// ```
    pub fn check(&self, check: usize) -> Option<Check> {
        self.check_ranges.get(check).and_then(|&check_start| {
            self.check_ranges.get(check + 1).map(|&check_end| Check {
                positions: &self.bit_indices[check_start..check_end],
            })
        })
    }

    /// Computes the dot product between `self` and a binary vector.
    ///
    /// # Example
    ///
    /// ```
    /// # use::believer::*;
    /// let parity_check = ParityCheckMatrix::new(
    ///     vec![
    ///         vec![0, 1],
    ///         vec![1, 2],
    ///     ],
    ///     3
    /// );
    /// let vector = vec![GF2::B0, GF2::B1, GF2::B1];
    ///
    /// assert_eq!(parity_check.dot(&vector), vec![GF2::B1, GF2::B0]);
    /// ```
    pub fn dot(&self, vector: &[GF2]) -> Vec<GF2> {
        self.checks_iter().map(|check| check.dot(vector)).collect()
    }

    /// Checks if a given `message` is a codeword of `self`.
    ///
    /// # Example
    ///
    /// ```
    /// # use believer::*;
    /// let parity_check = ParityCheckMatrix::new(
    ///     vec![
    ///         vec![0, 1],
    ///         vec![1, 2],
    ///     ],
    ///     3
    /// );
    /// let message = vec![GF2::B0, GF2::B1, GF2::B1];
    /// let codeword = vec![GF2::B0; 3];
    ///
    /// assert_eq!(parity_check.has_codeword(&message), false);
    /// assert_eq!(parity_check.has_codeword(&codeword), true);
    /// ```
    pub fn has_codeword(&self, message: &[GF2]) -> bool {
        self.checks_iter()
            .all(|check| check.dot(message) == GF2::B0)
    }

    /// Returns the extra spread per check of `self`. If all checks are locals (acts on
    /// consecutive bits), then the extra spread is 0. The extra spread of a check is
    /// the diffrence between its spread and length.
    ///  
    ///
    /// # Example
    ///
    /// ```
    /// # use believer::*;
    /// let parity_check = ParityCheckMatrix::new(
    ///     vec![
    ///         vec![0, 1],
    ///         vec![1, 2, 5],
    ///         vec![3],
    ///         vec![0, 4],
    ///         vec![],
    ///     ],
    ///     6
    /// );
    ///
    /// assert_eq!(parity_check.extra_spread_per_check(), vec![0, 2, 0, 3, 0]);
    /// ```
    pub fn extra_spread_per_check(&self) -> Vec<usize> {
        self.checks_iter()
            .map(|check| check.spread() - check.len())
            .collect()
    }

    /// Returns `true` is there is no value in `self`.
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Returns the number of 1 in `self`.
    pub fn len(&self) -> usize {
        self.bit_indices.len()
    }

    /// Returns the number of bits in `self`.
    pub fn n_bits(&self) -> usize {
        self.n_bits
    }

    /// Returns the number of checks in `self`.
    pub fn n_checks(&self) -> usize {
        self.check_ranges().len() - 1
    }

    /// Creates a new `ParityCheckMatrix` from a list of `checks` where
    /// each check is a list of the bits connected to that check and the
    /// number of bits.
    ///
    /// # Example
    ///
    /// ```
    /// # use::believer::ParityCheckMatrix;
    /// // The parity check matrix of a 3 bits repetition code.
    /// let parity_check = ParityCheckMatrix::new(
    ///     vec![
    ///         vec![0, 1],
    ///         vec![1, 2],
    ///     ],
    ///     3
    /// );
    /// ```
    pub fn new(mut checks: Vec<Vec<usize>>, n_bits: usize) -> Self {
        let mut bit_indices = Vec::new();
        let mut check_ranges = Vec::with_capacity(checks.len() + 1);
        check_ranges.push(0);

        let mut n_elements = 0;
        for check in checks.iter_mut() {
            n_elements += check.len();
            check_ranges.push(n_elements);
            check.sort();
            bit_indices.append(check);
        }

        Self {
            check_ranges,
            bit_indices,
            n_bits,
        }
    }

    /// TO DOCUMENT
    pub fn periodic_crossings(&self) -> Vec<usize> {
        self.adjacency().periodic_crossings()
    }

    /// Returns an iterators over all positions in `self` where the value
    /// is 1. Positions are ordered by check first.
    ///
    /// # Example
    ///
    /// ```
    /// # use believer::*;
    /// let parity_check = ParityCheckMatrix::new(
    ///     vec![
    ///         vec![0, 1],
    ///         vec![1, 2],
    ///     ],
    ///     3
    /// );
    /// let mut iter = parity_check.positions_iter();
    ///
    /// assert_eq!(iter.next(), Some((0, 0)));
    /// assert_eq!(iter.next(), Some((0, 1)));
    /// assert_eq!(iter.next(), Some((1, 1)));
    /// assert_eq!(iter.next(), Some((1, 2)));
    /// assert_eq!(iter.next(), None);
    /// ```
    pub fn positions_iter(&self) -> PositionsIter {
        PositionsIter {
            active_check: 0,
            index: 0,
            check_ranges: &self.check_ranges,
            bit_indices: &self.bit_indices,
        }
    }

    /// Computes the rank of `self`.
    ///
    /// # Example
    ///
    /// ```
    /// # use believer::*;
    /// let parity_check = ParityCheckMatrix::new(
    ///     vec![
    ///         vec![0, 1],
    ///         vec![1, 2],
    ///         vec![0, 2],
    ///     ],
    ///     3
    /// );
    /// assert_eq!(parity_check.rank(), 2);
    /// ```
    pub fn rank(&self) -> usize {
        Ranker::new(self).rank()
    }

    /// Computes the smallest path for each check needed to link each bit of that check together
    /// and returns the number of time each step is included in a path.
    /// 
    /// # Example
    /// 
    /// ```
    /// # use believer::*;
    /// // A 4 bits parity check matrix with only 1 check.
    /// let matrix = ParityCheckMatrix::new(vec![vec![0, 1, 3]], 4);
    /// 
    /// // The smallest path is 3 -> 0 -> 1, therefore the steps 0 -> 1 and 3 -> 1 have weight 1 and
    /// // the steps 1 -> 2 and 2 -> 3 have weight 0.
    /// assert_eq!(matrix.smallest_periodic_path_weights(), vec![1, 0, 0, 1]);
    /// 
    /// // A 4 bits parity check matrix with 2 checks;
    /// let matrix = ParityCheckMatrix::new(vec![vec![0, 1, 3], vec![0, 1, 2]], 4);
    /// 
    /// // The smallest path of the new check is 0 -> 1 -> 2.
    /// assert_eq!(matrix.smallest_periodic_path_weights(), vec![2, 1, 0, 1]);
    /// ```
    pub fn smallest_periodic_path_weights(&self) -> Vec<usize> {
        let paths = SmallestPeriodicPaths::new(self);
        paths.step_weights()
    }

    // *
    // Private methods
    // *

    fn adjacency(&self) -> Adjacency {
        let mut rows = vec![Vec::new(); self.n_bits];
        self.checks_iter().for_each(|check| {
            for active in 0..check.len() {
                if let Some(&active_bit) = check.positions().get(active) {
                    check
                        .positions()
                        .iter()
                        .skip(active + 1)
                        .for_each(|&other_bit| {
                            rows[active_bit].push(other_bit);
                        })
                }
            }
        });
        Adjacency {
            rows,
            n_bits: self.n_bits,
        }
    }

    // Returns a reference to `self.check_ranges`.
    pub(crate) fn check_ranges(&self) -> &[usize] {
        &self.check_ranges
    }

    // Returns a reference to `self.bit_indices
    pub(crate) fn bit_indices(&self) -> &[usize] {
        &self.bit_indices
    }

    pub(crate) fn keep(&self, bits: &[usize]) -> Self {
        let checks = self
            .checks_iter()
            .map(|check| {
                check
                    .positions()
                    .iter()
                    .filter(|&bit| bits.iter().any(|b| b == bit))
                    .cloned()
                    .collect()
            })
            .collect();
        Self::new(checks, self.len())
    }
}

impl std::fmt::Display for ParityCheckMatrix {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        for check in self.checks_iter() {
            write!(f, "{:?}\n", check.positions())?;
        }
        Ok(())
    }
}

// ************************
// Public utilitary structs
// ************************

/// Iterator over the checks of a parity check matrix.
pub struct ChecksIter<'a> {
    matrix: &'a ParityCheckMatrix,
    active_check: usize,
}

impl<'a> Iterator for ChecksIter<'a> {
    type Item = Check<'a>;

    fn next(&mut self) -> Option<Self::Item> {
        let slice = self.matrix.check(self.active_check);
        self.active_check += 1;
        slice
    }
}

/// A wrapper over a check. It contains the positions of the bits in the check.
#[derive(Debug, PartialEq)]
pub struct Check<'a> {
    positions: &'a [usize],
}

impl<'a> Check<'a> {
    /// Returns the dot product between `self` and `other`. In that case, it corresponds to the
    /// parity of the overlap.
    ///
    /// # Example
    ///
    /// ```
    /// # use believer::*;
    /// let parity_check = ParityCheckMatrix::new(
    ///     vec![
    ///         vec![0, 1, 2, 4],
    ///         vec![0, 1, 3, 5],
    ///         vec![0, 2, 3, 6],
    ///     ],
    ///     7
    /// );
    /// let other = vec![GF2::B0, GF2::B1, GF2::B0, GF2::B1, GF2::B0, GF2::B1, GF2::B0];
    ///
    /// assert_eq!(parity_check.check(0).unwrap().dot(&other), GF2::B1);
    /// assert_eq!(parity_check.check(1).unwrap().dot(&other), GF2::B1);
    /// assert_eq!(parity_check.check(2).unwrap().dot(&other), GF2::B1);
    /// ```
    pub fn dot(&self, other: &[GF2]) -> GF2 {
        let mut total = GF2::B0;
        self.positions.iter().for_each(|&pos| {
            if let Some(&value) = other.get(pos) {
                total = total + value;
            }
        });
        total
    }

    /// Returns the number of positions in `self`.
    pub fn len(&self) -> usize {
        self.positions.len()
    }

    /// Returns the positions of the bits in `self`.
    ///
    /// # Example
    ///
    /// ```
    /// # use believer::*;
    /// let parity_check = ParityCheckMatrix::new(
    ///     vec![
    ///         vec![0, 1],
    ///         vec![1, 2],
    ///     ],
    ///     3
    /// );
    ///
    /// assert_eq!(parity_check.check(0).unwrap().positions(), &[0, 1]);
    /// assert_eq!(parity_check.check(1).unwrap().positions(), &[1, 2]);
    /// ```
    pub fn positions(&self) -> &[usize] {
        self.positions
    }

    /// Returns the spread of `self`, that is `max(self) - min(self) + 1'.
    ///
    /// # Example
    ///
    /// ```
    /// # use believer::*;
    /// let parity_check = ParityCheckMatrix::new(
    ///     vec![
    ///         vec![0, 1],
    ///         vec![1, 2, 5],
    ///         vec![3],
    ///         vec![0, 4],
    ///         vec![],
    ///     ],
    ///     6
    /// );
    ///
    /// assert_eq!(parity_check.check(0).unwrap().spread(), 2);
    /// assert_eq!(parity_check.check(1).unwrap().spread(), 5);
    /// assert_eq!(parity_check.check(2).unwrap().spread(), 1);
    /// assert_eq!(parity_check.check(3).unwrap().spread(), 5);
    /// assert_eq!(parity_check.check(4).unwrap().spread(), 0);
    /// ```
    pub fn spread(&self) -> usize {
        self.positions
            .last()
            .and_then(|last| self.positions.first().map(|first| last - first + 1))
            .unwrap_or(0)
    }
}

/// An iterator over the position where a parity check matrix is 1.
/// It is ordered by row and then by col.
pub struct PositionsIter<'a> {
    active_check: usize,
    index: usize,
    check_ranges: &'a [usize],
    bit_indices: &'a [usize],
}

impl<'a> Iterator for PositionsIter<'a> {
    type Item = (usize, usize);

    fn next(&mut self) -> Option<Self::Item> {
        self.check_ranges
            .get(self.active_check + 1)
            .and_then(|&check_end| {
                if self.index >= check_end {
                    self.active_check += 1;
                }
                let position = self
                    .bit_indices
                    .get(self.index)
                    .map(|&col| (self.active_check, col));
                self.index += 1;
                position
            })
    }
}

// *************************
// Private utilitary structs
// *************************

// Helper struct to computer the crossing in the adjacency matrix.
struct Adjacency {
    rows: Vec<Vec<usize>>,
    n_bits: usize,
}

impl Adjacency {
    fn periodic_crossings(&self) -> Vec<usize> {
        let mut crossings = vec![0; self.n_bits];
        self.rows.iter().enumerate().for_each(|(bit_0, row)| {
            row.iter().for_each(|&bit_1| {
                self.periodic_range(bit_0, bit_1).iter().for_each(|&index| {
                    crossings[index] += 1;
                });
            });
        });
        crossings
    }

    fn periodic_range(&self, bit_0: usize, bit_1: usize) -> Vec<usize> {
        let distance = max(bit_0, bit_1) - min(bit_0, bit_1);
        if distance <= self.n_bits - distance {
            (bit_0..bit_1).collect()
        } else {
            (bit_1..(self.n_bits + bit_0))
                .map(|x| x % self.n_bits)
                .collect()
        }
    }
}

struct SmallestPeriodicPaths {
    checks: Vec<Vec<usize>>,
    n_bits: usize,
}

impl SmallestPeriodicPaths {
    fn distance_at_step(&self, check: &[usize], step: usize) -> usize {
        let (bit_0, bit_1) = (check[step % check.len()], check[(step + 1) % check.len()]);
        (self.n_bits + bit_1 - bit_0) % self.n_bits
    }
    
    fn find_starting_point(&self, check: &[usize]) -> usize {
        let mut starting_point = 0;
        let mut maximal_distance = 0;
        for step in 0..check.len() {
            let distance = self.distance_at_step(check, step);
            if distance > maximal_distance {
                starting_point = (step + 1) % check.len();
                maximal_distance = distance;
            }
        }
        starting_point
    }

    fn new(matrix: &ParityCheckMatrix) -> Self {
        let mut checks = Vec::with_capacity(matrix.n_checks());
        for check in matrix.checks_iter() {
            checks.push(check.positions().to_vec());
        }
        Self {
            checks,
            n_bits: matrix.n_bits(),
        }
    }

    fn range_from(&self, start: usize, check: &[usize]) -> std::ops::Range<usize> {
        let first_bit = check[start];
        let mut last_bit = if start == 0 {
            check[check.len() - 1]
        } else {
            check[start - 1]
        };
        if last_bit < first_bit {
            last_bit += self.n_bits;
        }
        first_bit..last_bit
    }

    fn step_weights(&self) -> Vec<usize> {
        let mut weights = vec![0; self.n_bits];
        for check in self.checks.iter() {
            let start = self.find_starting_point(check);
            for bit in self.range_from(start, check) {
                weights[bit % self.n_bits] += 1;
            }
        }
        weights
    }
}

// Helper struct to compute the rank of a parity check matrix.
struct Ranker {
    checks: Vec<Vec<Vec<usize>>>,
    n_cols: usize,
}

impl Ranker {
    fn new(matrix: &ParityCheckMatrix) -> Self {
        let mut checks = vec![Vec::new(); matrix.n_bits()];
        matrix.checks_iter().for_each(|check| {
            if let Some(col) = check.positions().first() {
                checks[*col].push(check.positions().to_vec());
            }
        });
        Self {
            checks,
            n_cols: matrix.n_bits(),
        }
    }

    fn rank(&mut self) -> usize {
        self.echelon_form();
        let mut r = 0;
        for col in 0..self.n_cols {
            if !self.checks[col].is_empty() {
                r += 1;
            }
        }
        r
    }

    // Private methodes

    fn eliminate_col(&mut self, col: usize) {
        if let Some(pivot_check) = self.checks[col].pop() {
            while let Some(other_check) = self.checks[col].pop() {
                self.insert(add_checks(&pivot_check, &other_check));
            }
            self.checks[col].push(pivot_check)
        }
    }

    fn insert(&mut self, check: Vec<usize>) {
        if let Some(&x) = check.first() {
            self.checks[x].push(check);
        }
    }

    fn echelon_form(&mut self) {
        for col in 0..self.n_cols {
            self.eliminate_col(col);
        }
    }
}

fn add_checks(check_0: &[usize], check_1: &[usize]) -> Vec<usize> {
    let mut sum = Vec::with_capacity(check_0.len() + check_1.len());
    let mut iter_0 = check_0.iter().peekable();
    let mut iter_1 = check_1.iter().peekable();
    loop {
        match (iter_0.peek(), iter_1.peek()) {
            (Some(&&v), None) => {
                sum.push(v);
                iter_0.next();
            }
            (None, Some(&&v)) => {
                sum.push(v);
                iter_1.next();
            }
            (Some(&&v_0), Some(&&v_1)) => {
                if v_0 < v_1 {
                    sum.push(v_0);
                    iter_0.next();
                } else if v_0 > v_1 {
                    sum.push(v_1);
                    iter_1.next();
                } else {
                    iter_0.next();
                    iter_1.next();
                }
            }
            (None, None) => break,
        }
    }
    sum
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn checks_iterator() {
        let parity_check = ParityCheckMatrix::new(vec![vec![0, 1], vec![1, 2]], 3);
        let mut iter = parity_check.checks_iter();

        assert_eq!(iter.next(), parity_check.check(0));
        assert_eq!(iter.next(), parity_check.check(1));
        assert_eq!(iter.next(), None);

        assert_eq!(parity_check.check(0).unwrap().positions(), &[0, 1]);
        assert_eq!(parity_check.check(1).unwrap().positions(), &[1, 2]);
    }

    #[test]
    fn dot_product() {
        let parity_check = ParityCheckMatrix::new(vec![vec![0, 1], vec![1, 2]], 3);
        let bits = vec![GF2::B0, GF2::B1, GF2::B1];

        assert_eq!(parity_check.check(0).unwrap().dot(&bits), GF2::B1);
        assert_eq!(parity_check.check(1).unwrap().dot(&bits), GF2::B0);
        assert_eq!(parity_check.dot(&bits), vec![GF2::B1, GF2::B0]);
    }

    #[test]
    fn positions_iterator() {
        let parity_check = ParityCheckMatrix::new(vec![vec![0, 1], vec![1, 2]], 3);
        let mut iter = parity_check.positions_iter();

        assert_eq!(iter.next(), Some((0, 0)));
        assert_eq!(iter.next(), Some((0, 1)));
        assert_eq!(iter.next(), Some((1, 1)));
        assert_eq!(iter.next(), Some((1, 2)));
        assert_eq!(iter.next(), None);
    }

    #[test]
    fn periodic_crossings() {
        let checks = ParityCheckMatrix::new(
            vec![vec![0, 1, 4], vec![2, 3], vec![4, 6], vec![1, 5, 6]],
            7,
        );
        assert_eq!(checks.periodic_crossings(), vec![3, 1, 2, 1, 2, 4, 3]);

        let other_checks = ParityCheckMatrix::new(
            vec![vec![0, 1, 2], vec![2, 3], vec![3, 4, 5], vec![5, 6, 0]],
            7,
        );
        assert_eq!(other_checks.periodic_crossings(), vec![2, 2, 1, 2, 2, 2, 2]);
    }

    #[test]
    fn rank() {
        let parity_check_0 = ParityCheckMatrix::new(
            vec![vec![0, 1, 2, 4], vec![0, 1, 3, 5], vec![0, 2, 3, 6]],
            7,
        );
        assert_eq!(parity_check_0.rank(), 3);

        let parity_check_1 = ParityCheckMatrix::new(vec![vec![0, 1], vec![1, 2], vec![0, 2]], 3);
        assert_eq!(parity_check_1.rank(), 2);
    }

    #[test]
    fn size() {
        let parity_check = ParityCheckMatrix::new(vec![vec![0, 1], vec![1, 2]], 3);

        assert_eq!(parity_check.len(), 4);
        assert_eq!(parity_check.n_bits(), 3);
        assert_eq!(parity_check.n_checks(), 2);
    }

    #[test]
    fn smallest_periodic_path_weights() {
        let checks = ParityCheckMatrix::new(
            vec![vec![0, 1, 4], vec![2, 3], vec![4, 6], vec![1, 5, 6]],
            7,
        );

        assert_eq!(checks.smallest_periodic_path_weights(), vec![2, 0, 1, 0, 2, 3, 2]);

        let other_checks = ParityCheckMatrix::new(
            vec![vec![0, 1, 2], vec![2, 3], vec![3, 4, 5], vec![5, 6, 0]],
            7,
        );
        assert_eq!(other_checks.smallest_periodic_path_weights(), vec![1, 1, 1, 1, 1, 1, 1]);      

        let last_checks = ParityCheckMatrix::new(
            vec![vec![0, 4], vec![2, 3, 4], vec![2, 6, 7], vec![0, 1, 5], vec![3, 4, 5, 6, 7]],
            8
        );

        assert_eq!(last_checks.smallest_periodic_path_weights(), vec![2, 1, 1, 2, 2, 3, 4, 3]);
    }
}