1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
// Copyright 2020-2021 IOTA Stiftung
// SPDX-License-Identifier: Apache-2.0

use crate::{
    constants::{INPUT_OUTPUT_COUNT_RANGE, IOTA_SUPPLY},
    input::Input,
    output::Output,
    payload::{option_payload_pack, option_payload_packed_len, option_payload_unpack, Payload},
    Error,
};

use bee_common::{
    ord::is_sorted,
    packable::{Packable, Read, Write},
};

use alloc::{boxed::Box, vec::Vec};

/// A transaction regular essence consuming inputs, creating outputs and carrying an optional payload.
#[derive(Clone, Debug, Eq, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct RegularEssence {
    inputs: Box<[Input]>,
    outputs: Box<[Output]>,
    payload: Option<Payload>,
}

impl RegularEssence {
    /// The essence kind of a `RegularEssence`
    pub const KIND: u8 = 0;

    /// Create a new `RegularEssenceBuilder` to build a `RegularEssence`.
    pub fn builder() -> RegularEssenceBuilder {
        RegularEssenceBuilder::new()
    }

    /// Return the inputs of a `RegularEssence`.
    pub fn inputs(&self) -> &[Input] {
        &self.inputs
    }

    /// Return the outputs of a `RegularEssence`.
    pub fn outputs(&self) -> &[Output] {
        &self.outputs
    }

    /// Return the optional payload of a `RegularEssence`.
    pub fn payload(&self) -> &Option<Payload> {
        &self.payload
    }
}

impl Packable for RegularEssence {
    type Error = Error;

    fn packed_len(&self) -> usize {
        0u16.packed_len()
            + self.inputs.iter().map(Packable::packed_len).sum::<usize>()
            + 0u16.packed_len()
            + self.outputs.iter().map(Packable::packed_len).sum::<usize>()
            + option_payload_packed_len(self.payload.as_ref())
    }

    fn pack<W: Write>(&self, writer: &mut W) -> Result<(), Self::Error> {
        (self.inputs.len() as u16).pack(writer)?;
        for input in self.inputs.iter() {
            input.pack(writer)?;
        }
        (self.outputs.len() as u16).pack(writer)?;
        for output in self.outputs.iter() {
            output.pack(writer)?;
        }
        option_payload_pack(writer, self.payload.as_ref())?;

        Ok(())
    }

    fn unpack_inner<R: Read + ?Sized, const CHECK: bool>(reader: &mut R) -> Result<Self, Self::Error> {
        let inputs_len = u16::unpack_inner::<R, CHECK>(reader)? as usize;

        if CHECK && !INPUT_OUTPUT_COUNT_RANGE.contains(&inputs_len) {
            return Err(Error::InvalidInputOutputCount(inputs_len));
        }

        let mut inputs = Vec::with_capacity(inputs_len);
        for _ in 0..inputs_len {
            inputs.push(Input::unpack_inner::<R, CHECK>(reader)?);
        }

        let outputs_len = u16::unpack_inner::<R, CHECK>(reader)? as usize;

        if CHECK && !INPUT_OUTPUT_COUNT_RANGE.contains(&outputs_len) {
            return Err(Error::InvalidInputOutputCount(outputs_len));
        }

        let mut outputs = Vec::with_capacity(outputs_len);
        for _ in 0..outputs_len {
            outputs.push(Output::unpack_inner::<R, CHECK>(reader)?);
        }

        let mut builder = Self::builder().with_inputs(inputs).with_outputs(outputs);

        if let (_, Some(payload)) = option_payload_unpack::<R, CHECK>(reader)? {
            builder = builder.with_payload(payload);
        }

        builder.finish()
    }
}

/// A builder to build a `RegularEssence`.
#[derive(Debug, Default)]
pub struct RegularEssenceBuilder {
    inputs: Vec<Input>,
    outputs: Vec<Output>,
    payload: Option<Payload>,
}

impl RegularEssenceBuilder {
    /// Creates a new `RegularEssenceBuilder`.
    pub fn new() -> Self {
        Self::default()
    }

    /// Adds inputs to a `RegularEssenceBuilder`
    pub fn with_inputs(mut self, inputs: Vec<Input>) -> Self {
        self.inputs = inputs;
        self
    }

    /// Add an input to a `RegularEssenceBuilder`.
    pub fn add_input(mut self, input: Input) -> Self {
        self.inputs.push(input);
        self
    }

    /// Add outputs to a `RegularEssenceBuilder`.
    pub fn with_outputs(mut self, outputs: Vec<Output>) -> Self {
        self.outputs = outputs;
        self
    }

    /// Add an output to a `RegularEssenceBuilder`.
    pub fn add_output(mut self, output: Output) -> Self {
        self.outputs.push(output);
        self
    }

    /// Add a payload to a `RegularEssenceBuilder`.
    pub fn with_payload(mut self, payload: Payload) -> Self {
        self.payload = Some(payload);
        self
    }

    /// Finishes a `RegularEssenceBuilder` into a `RegularEssence`.
    pub fn finish(self) -> Result<RegularEssence, Error> {
        if !INPUT_OUTPUT_COUNT_RANGE.contains(&self.inputs.len()) {
            return Err(Error::InvalidInputOutputCount(self.inputs.len()));
        }

        if !INPUT_OUTPUT_COUNT_RANGE.contains(&self.outputs.len()) {
            return Err(Error::InvalidInputOutputCount(self.outputs.len()));
        }

        if !matches!(self.payload, None | Some(Payload::Indexation(_))) {
            // Unwrap is fine because we just checked that the Option is not None.
            return Err(Error::InvalidPayloadKind(self.payload.unwrap().kind()));
        }

        for input in self.inputs.iter() {
            match input {
                Input::Utxo(u) => {
                    if self.inputs.iter().filter(|i| *i == input).count() > 1 {
                        return Err(Error::DuplicateUtxo(u.clone()));
                    }
                }
                _ => return Err(Error::InvalidInputKind(input.kind())),
            }
        }

        // Inputs must be lexicographically sorted in their serialised forms.
        if !is_sorted(self.inputs.iter().map(Packable::pack_new)) {
            return Err(Error::TransactionInputsNotSorted);
        }

        let mut total: u64 = 0;

        for output in self.outputs.iter() {
            match output {
                Output::SignatureLockedSingle(single) => {
                    // The addresses must be unique in the set of SignatureLockedSingleOutputs.
                    if self
                        .outputs
                        .iter()
                        .filter(|o| matches!(o, Output::SignatureLockedSingle(s) if s.address() == single.address()))
                        .count()
                        > 1
                    {
                        return Err(Error::DuplicateAddress(*single.address()));
                    }

                    total = total
                        .checked_add(single.amount())
                        .ok_or_else(|| Error::InvalidAccumulatedOutput((total + single.amount()) as u128))?;
                }
                Output::SignatureLockedDustAllowance(dust_allowance) => {
                    // The addresses must be unique in the set of SignatureLockedDustAllowanceOutputs.
                    if self
                        .outputs
                        .iter()
                        .filter(
                            |o| matches!(o, Output::SignatureLockedDustAllowance(s) if s.address() == dust_allowance.address()),
                        )
                        .count()
                        > 1
                    {
                        return Err(Error::DuplicateAddress(*dust_allowance.address()));
                    }

                    total = total.checked_add(dust_allowance.amount()).ok_or_else(|| {
                        Error::InvalidAccumulatedOutput(total as u128 + dust_allowance.amount() as u128)
                    })?;
                }
                _ => return Err(Error::InvalidOutputKind(output.kind())),
            }

            // Accumulated output balance must not exceed the total supply of tokens.
            if total > IOTA_SUPPLY {
                return Err(Error::InvalidAccumulatedOutput(total as u128));
            }
        }

        // Outputs must be lexicographically sorted in their serialised forms.
        if !is_sorted(self.outputs.iter().map(Packable::pack_new)) {
            return Err(Error::TransactionOutputsNotSorted);
        }

        Ok(RegularEssence {
            inputs: self.inputs.into_boxed_slice(),
            outputs: self.outputs.into_boxed_slice(),
            payload: self.payload,
        })
    }
}