Struct bdk::descriptor::Miniscript

source ·
pub struct Miniscript<Pk, Ctx>where
    Pk: MiniscriptKey,
    Ctx: ScriptContext,{
    pub node: Terminal<Pk, Ctx>,
    pub ty: Type,
    pub ext: ExtData,
    /* private fields */
}
Expand description

Top-level script AST type

Fields§

§node: Terminal<Pk, Ctx>

A node in the Abstract Syntax Tree(

§ty: Type

The correctness and malleability type information for the AST node

§ext: ExtData

Additional information helpful for extra analysis.

Implementations§

source§

impl<Pk, Ctx> Miniscript<Pk, Ctx>where Pk: MiniscriptKey, Ctx: ScriptContext,

source

pub fn requires_sig(&self) -> bool

Whether all spend paths of miniscript require a signature

source

pub fn is_non_malleable(&self) -> bool

Whether the miniscript is malleable

source

pub fn within_resource_limits(&self) -> bool

Whether the miniscript can exceed the resource limits(Opcodes, Stack limit etc)

source

pub fn has_mixed_timelocks(&self) -> bool

Whether the miniscript contains a combination of timelocks

source

pub fn has_repeated_keys(&self) -> bool

Whether the miniscript has repeated Pk or Pkh

source

pub fn contains_raw_pkh(&self) -> bool

Whether the given miniscript contains a raw pkh fragment

source

pub fn sanity_check(&self) -> Result<(), AnalysisError>

Check whether the underlying Miniscript is safe under the current context Lifting these polices would create a semantic representation that does not represent the underlying semantics when miniscript is spent. Signing logic may not find satisfaction even if one exists.

For most cases, users should be dealing with safe scripts. Use this function to check whether the guarantees of library hold. Most functions of the library like would still work, but results cannot be relied upon

source

pub fn ext_check(&self, ext: &ExtParams) -> Result<(), AnalysisError>

Check whether the miniscript follows the given Extra policy ExtParams

source§

impl<Pk, Ctx> Miniscript<Pk, Ctx>where Pk: MiniscriptKey, Ctx: ScriptContext,

Iterator-related extensions for Miniscript

source

pub fn iter(&self) -> Iter<'_, Pk, Ctx>

Creates a new Iter iterator that will iterate over all Miniscript items within AST by traversing its branches. For the specific algorithm please see Iter::next function.

source

pub fn iter_pk(&self) -> PkIter<'_, Pk, Ctx>

Creates a new PkIter iterator that will iterate over all plain public keys (and not key hash values) present in Miniscript items within AST by traversing all its branches. For the specific algorithm please see PkIter::next function.

source

pub fn branches(&self) -> Vec<&Miniscript<Pk, Ctx>>

Enumerates all child nodes of the current AST node (self) and returns a Vec referencing them.

source

pub fn get_nth_child(&self, n: usize) -> Option<&Miniscript<Pk, Ctx>>

Returns child node with given index, if any

source

pub fn get_nth_pk(&self, n: usize) -> Option<Pk>

Returns Option::Some with cloned n’th public key from the current miniscript item, if any. Otherwise returns Option::None.

NB: The function analyzes only single miniscript item and not any of its descendants in AST.

source§

impl<Pk, Ctx> Miniscript<Pk, Ctx>where Pk: MiniscriptKey, Ctx: ScriptContext,

source

pub fn from_ast(t: Terminal<Pk, Ctx>) -> Result<Miniscript<Pk, Ctx>, Error>

Add type information(Type and Extdata) to Miniscript based on AstElem fragment. Dependent on display and clone because of Error Display code of type_check.

source

pub fn from_components_unchecked( node: Terminal<Pk, Ctx>, ty: Type, ext: ExtData ) -> Miniscript<Pk, Ctx>

Create a new Miniscript from a Terminal node and a Type annotation This does not check the typing rules. The user is responsible for ensuring that the type provided is correct.

You should almost always use Miniscript::from_ast instead of this function.

source§

impl<Pk, Ctx> Miniscript<Pk, Ctx>where Pk: MiniscriptKey, Ctx: ScriptContext,

source

pub fn into_inner(self) -> Terminal<Pk, Ctx>

Extracts the AstElem representing the root of the miniscript

source

pub fn as_inner(&self) -> &Terminal<Pk, Ctx>

Get a reference to the inner AstElem representing the root of miniscript

source§

impl<Ctx> Miniscript<<Ctx as ScriptContext>::Key, Ctx>where Ctx: ScriptContext,

source

pub fn parse_insane( script: &Script ) -> Result<Miniscript<<Ctx as ScriptContext>::Key, Ctx>, Error>

Attempt to parse an insane(scripts don’t clear sanity checks) script into a Miniscript representation. Use this to parse scripts with repeated pubkeys, timelock mixing, malleable scripts without sig or scripts that can exceed resource limits. Some of the analysis guarantees of miniscript are lost when dealing with insane scripts. In general, in a multi-party setting users should only accept sane scripts.

source

pub fn parse_with_ext( script: &Script, ext: &ExtParams ) -> Result<Miniscript<<Ctx as ScriptContext>::Key, Ctx>, Error>

Attempt to parse an miniscript with extra features that not yet specified in the spec. Users should not use this function unless they scripts can/will change in the future. Currently, this function supports the following features: - Parsing all insane scripts - Parsing miniscripts with raw pubkey hashes

Allowed extra features can be specified by the ext ExtParams argument.

source

pub fn parse( script: &Script ) -> Result<Miniscript<<Ctx as ScriptContext>::Key, Ctx>, Error>

Attempt to parse a Script into Miniscript representation.

This function will fail parsing for scripts that do not clear the Miniscript::sanity_check checks. Use Miniscript::parse_insane to parse such scripts.

Decode/Parse a miniscript from script hex
use miniscript::{Miniscript, Segwitv0, Tap};
use miniscript::bitcoin::secp256k1::XOnlyPublicKey;
use miniscript::bitcoin::hashes::hex::FromHex;

type Segwitv0Script = Miniscript<bitcoin::PublicKey, Segwitv0>;
type TapScript = Miniscript<XOnlyPublicKey, Tap>;

// parse x-only miniscript in Taproot context
let tapscript_ms = TapScript::parse(&bitcoin::ScriptBuf::from_hex(
    "202788ee41e76f4f3af603da5bc8fa22997bc0344bb0f95666ba6aaff0242baa99ac",
).expect("Even length hex"))
    .expect("Xonly keys are valid only in taproot context");
// tapscript fails decoding when we use them with compressed keys
let err = TapScript::parse(&bitcoin::ScriptBuf::from_hex(
    "21022788ee41e76f4f3af603da5bc8fa22997bc0344bb0f95666ba6aaff0242baa99ac",
).expect("Even length hex"))
    .expect_err("Compressed keys cannot be used in Taproot context");
// Segwitv0 succeeds decoding with full keys.
Segwitv0Script::parse(&bitcoin::ScriptBuf::from_hex(
    "21022788ee41e76f4f3af603da5bc8fa22997bc0344bb0f95666ba6aaff0242baa99ac",
).expect("Even length hex"))
    .expect("Compressed keys are allowed in Segwit context");
source§

impl<Pk, Ctx> Miniscript<Pk, Ctx>where Pk: MiniscriptKey, Ctx: ScriptContext,

source

pub fn encode(&self) -> ScriptBufwhere Pk: ToPublicKey,

Encode as a Bitcoin script

source

pub fn script_size(&self) -> usize

Size, in bytes of the script-pubkey. If this Miniscript is used outside of segwit (e.g. in a bare or P2SH descriptor), this quantity should be multiplied by 4 to compute the weight.

In general, it is not recommended to use this function directly, but to instead call the corresponding function on a Descriptor, which will handle the segwit/non-segwit technicalities for you.

source§

impl<Pk, Ctx> Miniscript<Pk, Ctx>where Pk: MiniscriptKey, Ctx: ScriptContext,

source

pub fn max_satisfaction_witness_elements(&self) -> Result<usize, Error>

Maximum number of witness elements used to satisfy the Miniscript fragment, including the witness script itself. Used to estimate the weight of the VarInt that specifies this number in a serialized transaction.

This function may returns Error when the Miniscript is impossible to satisfy

source

pub fn max_satisfaction_size(&self) -> Result<usize, Error>

Maximum size, in bytes, of a satisfying witness. For Segwit outputs one_cost should be set to 2, since the number 1 requires two bytes to encode. For non-segwit outputs one_cost should be set to 1, since OP_1 is available in scriptSigs.

In general, it is not recommended to use this function directly, but to instead call the corresponding function on a Descriptor, which will handle the segwit/non-segwit technicalities for you.

All signatures are assumed to be 73 bytes in size, including the length prefix (segwit) or push opcode (pre-segwit) and sighash postfix.

source§

impl<Pk, Ctx> Miniscript<Pk, Ctx>where Pk: MiniscriptKey + FromStr, <Pk as MiniscriptKey>::Sha256: FromStr, <Pk as MiniscriptKey>::Hash256: FromStr, <Pk as MiniscriptKey>::Ripemd160: FromStr, <Pk as MiniscriptKey>::Hash160: FromStr, <Pk as FromStr>::Err: ToString, <<Pk as MiniscriptKey>::Sha256 as FromStr>::Err: ToString, <<Pk as MiniscriptKey>::Hash256 as FromStr>::Err: ToString, <<Pk as MiniscriptKey>::Ripemd160 as FromStr>::Err: ToString, <<Pk as MiniscriptKey>::Hash160 as FromStr>::Err: ToString, Ctx: ScriptContext,

source

pub fn from_str_insane(s: &str) -> Result<Miniscript<Pk, Ctx>, Error>

Attempt to parse an insane(scripts don’t clear sanity checks) from string into a Miniscript representation. Use this to parse scripts with repeated pubkeys, timelock mixing, malleable scripts without sig or scripts that can exceed resource limits. Some of the analysis guarantees of miniscript are lost when dealing with insane scripts. In general, in a multi-party setting users should only accept sane scripts.

source§

impl<Pk, Ctx> Miniscript<Pk, Ctx>where Pk: MiniscriptKey + FromStr, <Pk as MiniscriptKey>::Sha256: FromStr, <Pk as MiniscriptKey>::Hash256: FromStr, <Pk as MiniscriptKey>::Ripemd160: FromStr, <Pk as MiniscriptKey>::Hash160: FromStr, <Pk as FromStr>::Err: ToString, <<Pk as MiniscriptKey>::Sha256 as FromStr>::Err: ToString, <<Pk as MiniscriptKey>::Hash256 as FromStr>::Err: ToString, <<Pk as MiniscriptKey>::Ripemd160 as FromStr>::Err: ToString, <<Pk as MiniscriptKey>::Hash160 as FromStr>::Err: ToString, Ctx: ScriptContext,

source

pub fn from_str_ext( s: &str, ext: &ExtParams ) -> Result<Miniscript<Pk, Ctx>, Error>

Attempt to parse an Miniscripts that don’t follow the spec. Use this to parse scripts with repeated pubkeys, timelock mixing, malleable scripts, raw pubkey hashes without sig or scripts that can exceed resource limits.

Use ExtParams builder to specify the types of non-sane rules to allow while parsing.

source§

impl<Pk, Ctx> Miniscript<Pk, Ctx>where Pk: MiniscriptKey, Ctx: ScriptContext,

source

pub fn satisfy<S>(&self, satisfier: S) -> Result<Vec<Vec<u8>>, Error>where S: Satisfier<Pk>, Pk: ToPublicKey,

Attempt to produce non-malleable satisfying witness for the witness script represented by the parse tree

source

pub fn satisfy_malleable<S>(&self, satisfier: S) -> Result<Vec<Vec<u8>>, Error>where S: Satisfier<Pk>, Pk: ToPublicKey,

Attempt to produce a malleable satisfying witness for the witness script represented by the parse tree

source§

impl<Pk, Ctx> Miniscript<Pk, Ctx>where Pk: MiniscriptKey, Ctx: ScriptContext,

source

pub fn lift_check(&self) -> Result<(), LiftError>

Lifting corresponds conversion of miniscript into Policy [policy.semantic.Policy] for human readable or machine analysis. However, naively lifting miniscripts can result in incorrect interpretations that don’t correspond underlying semantics when we try to spend them on bitcoin network. This can occur if the miniscript contains a

  1. Timelock combination
  2. Contains a spend that exceeds resource limits

Trait Implementations§

source§

impl<Pk, Ctx> Clone for Miniscript<Pk, Ctx>where Pk: Clone + MiniscriptKey, Ctx: Clone + ScriptContext,

source§

fn clone(&self) -> Miniscript<Pk, Ctx>

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl<Pk, Ctx> Debug for Miniscript<Pk, Ctx>where Pk: MiniscriptKey, Ctx: ScriptContext,

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
source§

impl<'de, Pk, Ctx> Deserialize<'de> for Miniscript<Pk, Ctx>where Pk: MiniscriptKey + FromStr, <Pk as MiniscriptKey>::Sha256: FromStr, <Pk as MiniscriptKey>::Hash256: FromStr, <Pk as MiniscriptKey>::Ripemd160: FromStr, <Pk as MiniscriptKey>::Hash160: FromStr, <Pk as FromStr>::Err: Display, <<Pk as MiniscriptKey>::Sha256 as FromStr>::Err: Display, <<Pk as MiniscriptKey>::Hash256 as FromStr>::Err: Display, <<Pk as MiniscriptKey>::Ripemd160 as FromStr>::Err: Display, <<Pk as MiniscriptKey>::Hash160 as FromStr>::Err: Display, Ctx: ScriptContext,

source§

fn deserialize<D>( deserializer: D ) -> Result<Miniscript<Pk, Ctx>, <D as Deserializer<'de>>::Error>where D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
source§

impl<Pk, Ctx> Display for Miniscript<Pk, Ctx>where Pk: MiniscriptKey, Ctx: ScriptContext,

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
source§

impl<Ctx: ScriptContext + 'static> ExtractPolicy for Miniscript<DescriptorPublicKey, Ctx>

source§

fn extract_policy( &self, signers: &SignersContainer, build_sat: BuildSatisfaction<'_>, secp: &Secp256k1<All> ) -> Result<Option<Policy>, Error>

Extract the spending policy
source§

impl<Pk, Ctx> ForEachKey<Pk> for Miniscript<Pk, Ctx>where Pk: MiniscriptKey, Ctx: ScriptContext,

source§

fn for_each_key<'a, F>(&'a self, pred: F) -> boolwhere F: FnMut(&'a Pk) -> bool,

Run a predicate on every key in the descriptor, returning whether the predicate returned true for every key
source§

fn for_any_key<'a, F>(&'a self, pred: F) -> boolwhere F: FnMut(&'a Pk) -> bool, Pk: 'a,

Run a predicate on every key in the descriptor, returning whether the predicate returned true for any key
source§

impl<Pk, Ctx> FromStr for Miniscript<Pk, Ctx>where Pk: MiniscriptKey + FromStr, <Pk as MiniscriptKey>::Sha256: FromStr, <Pk as MiniscriptKey>::Hash256: FromStr, <Pk as MiniscriptKey>::Ripemd160: FromStr, <Pk as MiniscriptKey>::Hash160: FromStr, <Pk as FromStr>::Err: ToString, <<Pk as MiniscriptKey>::Sha256 as FromStr>::Err: ToString, <<Pk as MiniscriptKey>::Hash256 as FromStr>::Err: ToString, <<Pk as MiniscriptKey>::Ripemd160 as FromStr>::Err: ToString, <<Pk as MiniscriptKey>::Hash160 as FromStr>::Err: ToString, Ctx: ScriptContext,

source§

fn from_str(s: &str) -> Result<Miniscript<Pk, Ctx>, Error>

Parse a Miniscript from string and perform sanity checks See Miniscript::from_str_insane to parse scripts from string that do not clear the Miniscript::sanity_check checks.

§

type Err = Error

The associated error which can be returned from parsing.
source§

impl<Pk, Ctx> FromTree for Miniscript<Pk, Ctx>where Pk: MiniscriptKey + FromStr, <Pk as MiniscriptKey>::Sha256: FromStr, <Pk as MiniscriptKey>::Hash256: FromStr, <Pk as MiniscriptKey>::Ripemd160: FromStr, <Pk as MiniscriptKey>::Hash160: FromStr, <Pk as FromStr>::Err: ToString, <<Pk as MiniscriptKey>::Sha256 as FromStr>::Err: ToString, <<Pk as MiniscriptKey>::Hash256 as FromStr>::Err: ToString, <<Pk as MiniscriptKey>::Ripemd160 as FromStr>::Err: ToString, <<Pk as MiniscriptKey>::Hash160 as FromStr>::Err: ToString, Ctx: ScriptContext,

source§

fn from_tree(top: &Tree<'_>) -> Result<Miniscript<Pk, Ctx>, Error>

Parse an expression tree into a Miniscript. As a general rule, this should not be called directly; rather go through the descriptor API.

source§

impl<Pk, Ctx> Hash for Miniscript<Pk, Ctx>where Pk: MiniscriptKey, Ctx: ScriptContext,

source§

fn hash<H>(&self, state: &mut H)where H: Hasher,

Feeds this value into the given Hasher. Read more
1.3.0 · source§

fn hash_slice<H>(data: &[Self], state: &mut H)where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
source§

impl<Pk, Ctx> Liftable<Pk> for Miniscript<Pk, Ctx>where Pk: MiniscriptKey, Ctx: ScriptContext,

source§

fn lift(&self) -> Result<Policy<Pk>, Error>

Convert the object into an abstract policy
source§

impl<Pk, Ctx> Ord for Miniscript<Pk, Ctx>where Pk: MiniscriptKey, Ctx: ScriptContext,

Ord of Miniscript must depend only on node and not the type information. The type information and extra_properties can be deterministically determined by the ast.

source§

fn cmp(&self, other: &Miniscript<Pk, Ctx>) -> Ordering

This method returns an Ordering between self and other. Read more
1.21.0 · source§

fn max(self, other: Self) -> Selfwhere Self: Sized,

Compares and returns the maximum of two values. Read more
1.21.0 · source§

fn min(self, other: Self) -> Selfwhere Self: Sized,

Compares and returns the minimum of two values. Read more
1.50.0 · source§

fn clamp(self, min: Self, max: Self) -> Selfwhere Self: Sized + PartialOrd,

Restrict a value to a certain interval. Read more
source§

impl<Pk, Ctx> PartialEq for Miniscript<Pk, Ctx>where Pk: MiniscriptKey, Ctx: ScriptContext,

PartialEq of Miniscript must depend only on node and not the type information. The type information and extra_properties can be deterministically determined by the ast.

source§

fn eq(&self, other: &Miniscript<Pk, Ctx>) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<Pk, Ctx> PartialOrd for Miniscript<Pk, Ctx>where Pk: MiniscriptKey, Ctx: ScriptContext,

PartialOrd of Miniscript must depend only on node and not the type information. The type information and extra_properties can be deterministically determined by the ast.

source§

fn partial_cmp(&self, other: &Miniscript<Pk, Ctx>) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · source§

fn lt(&self, other: &Rhs) -> bool

This method tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · source§

fn le(&self, other: &Rhs) -> bool

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · source§

fn gt(&self, other: &Rhs) -> bool

This method tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · source§

fn ge(&self, other: &Rhs) -> bool

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
source§

impl<'de, Pk, Ctx> Serialize for Miniscript<Pk, Ctx>where Pk: MiniscriptKey, Ctx: ScriptContext,

source§

fn serialize<S>( &self, serializer: S ) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>where S: Serializer,

Serialize this value into the given Serde serializer. Read more
source§

impl<Pk, Q, Ctx> TranslatePk<Pk, Q> for Miniscript<Pk, Ctx>where Pk: MiniscriptKey, Q: MiniscriptKey, Ctx: ScriptContext,

source§

fn translate_pk<T, E>( &self, translate: &mut T ) -> Result<<Miniscript<Pk, Ctx> as TranslatePk<Pk, Q>>::Output, TranslateErr<E>>where T: Translator<Pk, Q, E>,

Translates a struct from one generic to another where the translation for Pk is provided by Translator

§

type Output = Miniscript<Q, Ctx>

The associated output type. This must be Self<Q>.
source§

impl<Pk, Ctx> Eq for Miniscript<Pk, Ctx>where Pk: MiniscriptKey, Ctx: ScriptContext,

Eq of Miniscript must depend only on node and not the type information. The type information and extra_properties can be deterministically determined by the ast.

Auto Trait Implementations§

§

impl<Pk, Ctx> RefUnwindSafe for Miniscript<Pk, Ctx>where Ctx: RefUnwindSafe, Pk: RefUnwindSafe, <Pk as MiniscriptKey>::Hash160: RefUnwindSafe, <Pk as MiniscriptKey>::Hash256: RefUnwindSafe, <Pk as MiniscriptKey>::Ripemd160: RefUnwindSafe, <Pk as MiniscriptKey>::Sha256: RefUnwindSafe,

§

impl<Pk, Ctx> Send for Miniscript<Pk, Ctx>where Ctx: Send + Sync, Pk: Send + Sync, <Pk as MiniscriptKey>::Hash160: Send + Sync, <Pk as MiniscriptKey>::Hash256: Send + Sync, <Pk as MiniscriptKey>::Ripemd160: Send + Sync, <Pk as MiniscriptKey>::Sha256: Send + Sync,

§

impl<Pk, Ctx> Sync for Miniscript<Pk, Ctx>where Ctx: Send + Sync, Pk: Send + Sync, <Pk as MiniscriptKey>::Hash160: Send + Sync, <Pk as MiniscriptKey>::Hash256: Send + Sync, <Pk as MiniscriptKey>::Ripemd160: Send + Sync, <Pk as MiniscriptKey>::Sha256: Send + Sync,

§

impl<Pk, Ctx> Unpin for Miniscript<Pk, Ctx>where Ctx: Unpin, Pk: Unpin, <Pk as MiniscriptKey>::Hash160: Unpin, <Pk as MiniscriptKey>::Hash256: Unpin, <Pk as MiniscriptKey>::Ripemd160: Unpin, <Pk as MiniscriptKey>::Sha256: Unpin,

§

impl<Pk, Ctx> UnwindSafe for Miniscript<Pk, Ctx>where Ctx: UnwindSafe + RefUnwindSafe, Pk: UnwindSafe + RefUnwindSafe, <Pk as MiniscriptKey>::Hash160: UnwindSafe + RefUnwindSafe, <Pk as MiniscriptKey>::Hash256: UnwindSafe + RefUnwindSafe, <Pk as MiniscriptKey>::Ripemd160: UnwindSafe + RefUnwindSafe, <Pk as MiniscriptKey>::Sha256: UnwindSafe + RefUnwindSafe,

Blanket Implementations§

source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> CallHasher for Twhere T: Hash + ?Sized,

source§

default fn get_hash<H, B>(value: &H, build_hasher: &B) -> u64where H: Hash + ?Sized, B: BuildHasher,

source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for Twhere U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

§

impl<T> Pointable for T

§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
source§

impl<T> ToOwned for Twhere T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T> ToString for Twhere T: Display + ?Sized,

source§

default fn to_string(&self) -> String

Converts the given value to a String. Read more
source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for Twhere V: MultiLane<T>,

§

fn vzip(self) -> V

source§

impl<T> DeserializeOwned for Twhere T: for<'de> Deserialize<'de>,