Crate bddisasm

source ·
Expand description

bddisasm x86/x64 instruction decoder

no_std Rust bindings for the bddisasm x86/x64 decoder library, built on top of bddisasm-sys.

It supports all existing 16-bit, 32-bit and 64-bit instruction, offering a wide range of information about each one, including:

  • implicit operands
  • explicit operands
  • access mode for each operand
  • CPUID feature flags
  • CPU modes in which an instruction is valid

§Usage

Add bddisasm to your Cargo.toml:

[dependencies]
bddisasm = "0.2"

§Examples

§Decoding one instruction

Use DecodedInstruction::decode to decode an instruction from a chunk of code.

use bddisasm::{DecodedInstruction, DecodeMode, Mnemonic};

let code = vec![0x31, 0xc0];
match DecodedInstruction::decode(&code, DecodeMode::Bits32) {
    Ok(ins) => {
        assert_eq!(ins.mnemonic(), Mnemonic::XOR);
        println!("{}", ins);
    },
    Err(err) => println!("Unable to decode: {}", err),
}

§Decoding multiple instructions

Use Decoder to decode multiple instructions from a chunk of code.

use bddisasm::{Decoder, DecodeMode};

let code = [
    // ENCLS
    0x0f, 0x01, 0xcf,
    // MOV       rax, qword ptr [rbx+rcx*4+0x1234]
    0x48, 0x8b, 0x84, 0x8b, 0x34, 0x12, 0x00, 0x00,
    // Not a valid instruction
    0x0f,
    // WRMSR
    0x0f, 0x30,
];
let decoder = Decoder::new(&code, DecodeMode::Bits64, 0x1234);

for ins in decoder {
    match ins {
        Ok(ins) => println!("{}", ins),
        Err(e) => println!("{}", e),
    }
}

This will print:

ENCLS
MOV       rax, qword ptr [rbx+rcx*4+0x1234]
the provided input buffer is too small
WRMSR

Use Decoder::decode_next_with_info to get information about the offset inside the code chunk at which an instruction was decoded from.

use bddisasm::{Decoder, DecodeMode};

let code = [
    // ENCLS
    0x0f, 0x01, 0xcf,
    // MOV       rax, qword ptr [rbx+rcx*4+0x1234]
    0x48, 0x8b, 0x84, 0x8b, 0x34, 0x12, 0x00, 0x00,
    // Not a valid instruction
    0x0f,
    // WRMSR
    0x0f, 0x30,
];
let mut decoder = Decoder::new(&code, DecodeMode::Bits64, 0x1234);


// Keep decoding until there's nothing left to decode
while let Some((result, offset, _)) = decoder.decode_next_with_info() {
    match result {
        Ok(ins) => println!("{:#x} {}", offset, ins),
        Err(e) => println!("Error: `{}` at offset {:#x}", e, offset),
    }
}

This will print:

0x0 ENCLS
0x3 MOV       rax, qword ptr [rbx+rcx*4+0x1234]
Error `the provided input buffer is too small` at offset 0xb
0xc WRMSR

§Working with instruction operands

Instruction operands can be analyzed using the operand module. Rich informaion is offered for each type of operand. Bellow is a minimal example that looks at a memory operand.

use bddisasm::{DecodedInstruction, DecodeMode, OpInfo};

// ` MOV       rax, qword ptr [rcx+r15*2]`
let code = b"\x4a\x8b\x04\x79";
let ins = DecodedInstruction::decode(code, DecodeMode::Bits64).unwrap();
// Get the operands
let operands = ins.operands();
// Get the second operand which is the source (`[rcx+r15*2]`)
let src = operands[1];

println!("Source operand type: {}", src.info);
match src.info {
    OpInfo::Mem(mem) => {
        if let Some(base) = mem.base {
            println!("Base register: {}", base);
        } else {
            println!("No base register");
        }

        if let Some(index) = mem.index {
            println!("Index register: {}", index);
        } else {
            println!("No index register");
        }

        if let Some(scale) = mem.scale {
            println!("Scale: {}", scale);
        } else {
            println!("No scale");
        }

        if let Some(displacement) = mem.disp {
            println!("Displacement: {}", displacement);
        } else {
            println!("No displacement");
        }
    },
    _ => unreachable!(),
}

Will print:

Source operand type: memory
Base register: 1
Index register: 15
Scale: 2
No displacement

§Accessing the raw bindings

The raw bddisasm_sys bindings are available via the ffi re-export.

§Feature Flags

  • std - adds a std dependency - the only visible difference when doing this is that DecodeError implements the Error trait

Re-exports§

Modules§

  • Offers information about the CPU modes in which an instruction is supported.
  • CPUID information used to check if an instruction is supported on a CPU or not.
  • Errors that can be encountered when decoding an instruction or when trying to get details about a decoded instruction.
  • Decodes instructions.
  • Decodes instructions.
  • Offers information about how an instructions accesses the FPU status registers.
  • Instruction categories.
  • Instruction sets.
  • Mnemonics.
  • Operand types and details.
  • Describes the bits in the FLAGS register.
  • Instruction tuple type.