1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
#![no_std]

#[cfg(test)]
mod tests;

/// A bcrypt work factor.
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct WorkFactor(u32);

/// A bcrypt hashing error.
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
pub enum BcryptError {
	/// The key was longer than the limit of 72 bytes.
	Length,

	/// The key contained a 0 byte.
	ZeroByte,
}

/// A bcrypt salt.
#[derive(Clone, Debug)]
pub struct Salt {
	be: [u32; 4],
}

impl Salt {
	/// Creates a bcrypt salt from any 16 bytes.
	pub fn from_bytes(bytes: &[u8; 16]) -> Self {
		let mut be = [0_u32; 4];

		for i in 0..4 {
			be[i] = u32::from_be_bytes([
				bytes[4 * i],
				bytes[4 * i + 1],
				bytes[4 * i + 2],
				bytes[4 * i + 3],
			]);
		}

		Self { be }
	}

	/// Gets the bytes making up a bcrypt salt.
	pub fn to_bytes(&self) -> [u8; 16] {
		let mut bytes = [0_u8; 16];

		for (b, w) in bytes.chunks_exact_mut(4).zip(self.be.iter().copied()) {
			b.copy_from_slice(&w.to_be_bytes());
		}

		bytes
	}
}

impl WorkFactor {
	/// Creates a bcrypt work factor from a typical base-2 exponent between 4 and 31 (inclusive). The number of rounds is 2\*\*`log_rounds`.
	pub fn exp(log_rounds: u32) -> Option<Self> {
		if log_rounds >= 4 && log_rounds <= 31 {
			Some(Self(log_rounds))
		} else {
			None
		}
	}

	/// The base-2 logarithm of the number of rounds represented by this work factor.
	pub const fn log_rounds(self) -> u32 {
		self.0
	}

	/// The number of rounds represented by this work factor.
	pub const fn linear_rounds(self) -> u32 {
		1 << self.0
	}
}

const BLF_N: usize = 16;

const BLOWFISH_INITIAL: BlowfishContext = BlowfishContext {
	s: include!("sbox-init.in"),
	p: [0x243f6a88, 0x85a308d3, 0x13198a2e, 0x03707344,
	    0xa4093822, 0x299f31d0, 0x082efa98, 0xec4e6c89,
	    0x452821e6, 0x38d01377, 0xbe5466cf, 0x34e90c6c,
	    0xc0ac29b7, 0xc97c50dd, 0x3f84d5b5, 0xb5470917,
	    0x9216d5d9, 0x8979fb1b],
};

const BCRYPT_MESSAGE: [u32; 6] = {
	const fn u32_from_be_bytes(bytes: [u8; 4]) -> u32 {
		(bytes[0] as u32) << 24
		| (bytes[1] as u32) << 16
		| (bytes[2] as u32) << 8
		| (bytes[3] as u32)
	}

	[
		u32_from_be_bytes(*b"Orph"),
		u32_from_be_bytes(*b"eanB"),
		u32_from_be_bytes(*b"ehol"),
		u32_from_be_bytes(*b"derS"),
		u32_from_be_bytes(*b"cryD"),
		u32_from_be_bytes(*b"oubt"),
	]
};

#[derive(Clone)]
struct BlowfishContext {
	s: [[u32; 256]; 4],  // S-Boxes
	p: [u32; BLF_N + 2], // subkeys
}

fn read_u32_be<T: Iterator<Item=u8>>(bytes: &mut T) -> u32 {
	u32::from(bytes.next().unwrap()) << 24
	| u32::from(bytes.next().unwrap()) << 16
	| u32::from(bytes.next().unwrap()) << 8
	| u32::from(bytes.next().unwrap())
}

fn f(c: &BlowfishContext, x: u32) -> u32 {
	let [b0, b1, b2, b3] = x.to_be_bytes();
	let h = c.s[0][usize::from(b0)].wrapping_add(c.s[1][usize::from(b1)]);
	(h ^ c.s[2][usize::from(b2)]).wrapping_add(c.s[3][usize::from(b3)])
}

fn blowfish_encipher(c: &BlowfishContext, mut l: u32, mut r: u32) -> (u32, u32) {
	for i in (0..16).step_by(2) {
		l ^= c.p[i];
		r ^= f(c, l);
		r ^= c.p[i + 1];
		l ^= f(c, r);
	}

	l ^= c.p[16];
	r ^= c.p[17];

	(r, l)
}

/// An iterator yielding the bytes of a key, then 0, forever.
struct KeyCycle<'a> {
	key: &'a [u8],
	index: usize,
}

impl<'a> Iterator for KeyCycle<'a> {
	type Item = u8;

	fn next(&mut self) -> Option<u8> {
		if self.index == self.key.len() {
			self.index = 0;
			return Some(0);
		}

		let result = self.key[self.index];
		self.index += 1;
		Some(result)
	}
}

fn blowfish_expandstate_key(c: &mut BlowfishContext, key: &[u8]) {
	let mut key_cycle = KeyCycle { key, index: 0 };

	for pi in &mut c.p {
		let temp = read_u32_be(&mut key_cycle);
		*pi ^= temp;
	}
}

fn blowfish_expandstate_data(c: &mut BlowfishContext, data: &[u32; 4]) {
	let mut datal = 0_u32;
	let mut datar = 0_u32;

	for i in (0..BLF_N + 2).step_by(2) {
		datal ^= data[i % 4];
		datar ^= data[i % 4 + 1];
		let (nextl, nextr) = blowfish_encipher(c, datal, datar);
		datal = nextl;
		datar = nextr;

		c.p[i] = datal;
		c.p[i + 1] = datar;
	}

	for i in 0..4 {
		for k in (0..256).step_by(2) {
			datal ^= data[(k + 2) % 4];
			datar ^= data[(k + 2) % 4 + 1];
			let (nextl, nextr) = blowfish_encipher(c, datal, datar);
			datal = nextl;
			datar = nextr;

			c.s[i][k] = datal;
			c.s[i][k + 1] = datar;
		}
	}
}

fn blowfish_expandstate_data0(c: &mut BlowfishContext) {
	let mut datal = 0_u32;
	let mut datar = 0_u32;

	for i in (0..BLF_N + 2).step_by(2) {
		let (nextl, nextr) = blowfish_encipher(c, datal, datar);
		datal = nextl;
		datar = nextr;

		c.p[i] = datal;
		c.p[i + 1] = datar;
	}

	for i in 0..4 {
		for k in (0..256).step_by(2) {
			let (nextl, nextr) = blowfish_encipher(c, datal, datar);
			datal = nextl;
			datar = nextr;

			c.s[i][k] = datal;
			c.s[i][k + 1] = datar;
		}
	}
}

/// Hashes a key and salt with bcrypt according to a work factor. The key can’t be longer than 72 bytes and can’t contain a 0 byte.
pub fn bcrypt(key: &[u8], salt: &Salt, work_factor: WorkFactor) -> Result<[u8; 23], BcryptError> {
	if key.len() > 72 {
		return Err(BcryptError::Length);
	}

	if key.contains(&b'\0') {
		return Err(BcryptError::ZeroByte);
	}

	let mut state = BLOWFISH_INITIAL;

	blowfish_expandstate_key(&mut state, key);
	blowfish_expandstate_data(&mut state, &salt.be);

	for _ in 0..work_factor.linear_rounds() {
		blowfish_expandstate_key(&mut state, key);
		blowfish_expandstate_data0(&mut state);

		for i in 0..(BLF_N + 2) {
			state.p[i] ^= salt.be[i % 4];
		}

		blowfish_expandstate_data0(&mut state);
	}

	let mut cdata = BCRYPT_MESSAGE;

	for _ in 0..64 {
		for i in (0..BCRYPT_MESSAGE.len()).step_by(2) {
			let (l, r) = blowfish_encipher(&state, cdata[i], cdata[i + 1]);
			cdata[i] = l;
			cdata[i + 1] = r;
		}
	}

	let mut result = [0_u8; 23];

	for (b, w) in result.chunks_exact_mut(4).zip(cdata.iter().copied()) {
		b.copy_from_slice(&w.to_be_bytes());
	}

	result[20..].copy_from_slice(&cdata[5].to_be_bytes()[0..3]);

	Ok(result)
}