bc_envelope/base/envelope.rs
1#[cfg(not(feature = "multithreaded"))]
2use std::rc::Rc as RefCounted;
3#[cfg(feature = "multithreaded")]
4use std::sync::Arc as RefCounted;
5
6#[cfg(feature = "compress")]
7use bc_components::Compressed;
8#[cfg(feature = "encrypt")]
9use bc_components::EncryptedMessage;
10use bc_components::{Digest, DigestProvider};
11use dcbor::prelude::*;
12
13#[cfg(feature = "known_value")]
14use crate::extension::KnownValue;
15use crate::{EnvelopeEncodable, Error, Result, base::Assertion};
16
17/// A flexible container for structured data with built-in integrity
18/// verification.
19///
20/// Gordian Envelope is the primary data structure of this crate. It provides a
21/// way to encapsulate and organize data with cryptographic integrity, privacy
22/// features, and selective disclosure capabilities.
23///
24/// Key characteristics of envelopes:
25///
26/// - **Immutability**: Envelopes are immutable. Operations that appear to
27/// "modify" an envelope actually create a new envelope. This immutability is
28/// fundamental to maintaining the integrity of the envelope's digest tree.
29///
30/// - **O(1) Cloning**: Envelopes use reference counting (`Rc` or `Arc` when the
31/// `multithreaded` feature is enabled) and structure sharing to enable
32/// efficient O(1) cloning of an `Envelope` or recursively, any `Envelope`s it
33/// contains. Cloning an `Envelope` simply increments the reference count,
34/// allowing multiple owners without duplicating the underlying data.
35///
36/// - **Semantic Structure**: Envelopes can represent various semantic
37/// relationships through subjects, predicates, and objects (similar to RDF
38/// triples).
39///
40/// - **Digest Tree**: Each envelope maintains a Merkle-like digest tree that
41/// ensures the integrity of its contents and enables verification of
42/// individual parts.
43///
44/// - **Privacy Features**: Envelopes support selective disclosure through
45/// elision, encryption, and compression of specific parts, while maintaining
46/// the overall integrity of the structure.
47///
48/// - **Deterministic Representation**: Envelopes use deterministic CBOR
49/// encoding to ensure consistent serialization across platforms.
50///
51/// The Gordian Envelope specification is defined in an IETF Internet Draft, and
52/// this implementation closely follows that specification.
53///
54/// # Example
55///
56/// ```
57/// use bc_envelope::prelude::*;
58///
59/// // Create an envelope representing a person
60/// let person = Envelope::new("person")
61/// .add_assertion("name", "Alice")
62/// .add_assertion("age", 30)
63/// .add_assertion("email", "alice@example.com");
64///
65/// // Create a partially redacted version by eliding the email
66/// let redacted = person.elide_removing_target(
67/// &person.assertion_with_predicate("email").unwrap(),
68/// );
69///
70/// // The digest of both envelopes remains the same
71/// assert_eq!(person.digest(), redacted.digest());
72/// ```
73#[derive(Debug, Clone, Eq)]
74pub struct Envelope(RefCounted<EnvelopeCase>);
75
76impl Envelope {
77 /// Returns a reference to the underlying envelope case.
78 ///
79 /// The `EnvelopeCase` enum represents the specific structural variant of
80 /// this envelope. This method provides access to that underlying
81 /// variant for operations that need to differentiate between the
82 /// different envelope types.
83 ///
84 /// # Returns
85 ///
86 /// A reference to the `EnvelopeCase` that defines this envelope's
87 /// structure.
88 pub fn case(&self) -> &EnvelopeCase { &self.0 }
89}
90
91/// Conversion from `EnvelopeCase` to `Envelope`.
92///
93/// This allows creating an envelope directly from an envelope case variant.
94impl From<EnvelopeCase> for Envelope {
95 fn from(case: EnvelopeCase) -> Self { Self(RefCounted::new(case)) }
96}
97
98/// Conversion from `&Envelope` to `Envelope`.
99///
100/// This creates a clone of the envelope. Since envelopes use reference
101/// counting, this is a relatively inexpensive operation.
102impl From<&Envelope> for Envelope {
103 fn from(envelope: &Envelope) -> Self { envelope.clone() }
104}
105
106/// The core structural variants of a Gordian Envelope.
107///
108/// Each variant of this enum represents a different structural form that an
109/// envelope can take, as defined in the Gordian Envelope IETF Internet Draft.
110/// The different cases provide different capabilities and serve different
111/// purposes in the envelope ecosystem.
112///
113/// The `EnvelopeCase` is the internal representation of an envelope's
114/// structure. While each case has unique properties, they all maintain a digest
115/// that ensures the integrity of the envelope.
116///
117/// It is advised to use the other Envelop APIs for most uses. Please see the
118/// queries module for more information on how to interact with envelopes.
119#[derive(Debug, PartialEq, Eq)]
120pub enum EnvelopeCase {
121 /// Represents an envelope with a subject and one or more assertions.
122 ///
123 /// A node is the fundamental structural component for building complex data
124 /// structures with Gordian Envelope. It consists of a subject and a set of
125 /// assertions about that subject.
126 ///
127 /// The digest of a node is derived from the digests of its subject and all
128 /// assertions, ensuring that any change to the node or its components would
129 /// result in a different digest.
130 Node {
131 /// The subject of the node
132 subject: Envelope,
133 /// The assertions attached to the subject
134 assertions: Vec<Envelope>,
135 /// The digest of the node
136 digest: Digest,
137 },
138
139 /// Represents an envelope containing a primitive CBOR value.
140 ///
141 /// A leaf is the simplest form of envelope, containing a single CBOR value
142 /// such as a string, number, or boolean. Leaves are the terminal nodes in
143 /// the envelope structure.
144 ///
145 /// The digest of a leaf is derived directly from its CBOR representation.
146 Leaf {
147 /// The CBOR value contained in the leaf
148 cbor: CBOR,
149 /// The digest of the leaf
150 digest: Digest,
151 },
152
153 /// Represents an envelope that wraps another envelope.
154 ///
155 /// Wrapping provides a way to encapsulate an entire envelope as the subject
156 /// of another envelope, enabling hierarchical structures and metadata
157 /// attachment.
158 ///
159 /// The digest of a wrapped envelope is derived from the digest of the
160 /// envelope it wraps.
161 Wrapped {
162 /// The envelope being wrapped
163 envelope: Envelope,
164 /// The digest of the wrapped envelope
165 digest: Digest,
166 },
167
168 /// Represents a predicate-object assertion.
169 ///
170 /// An assertion is a statement about a subject, consisting of a predicate
171 /// (what is being asserted) and an object (the value of the assertion).
172 /// Assertions are attached to envelope subjects to form semantic
173 /// statements.
174 ///
175 /// For example, in the statement "Alice hasEmail alice@example.com":
176 /// - The subject is "Alice"
177 /// - The predicate is "hasEmail"
178 /// - The object is "alice@example.com"
179 Assertion(Assertion),
180
181 /// Represents an envelope that has been elided, leaving only its digest.
182 ///
183 /// Elision is a key privacy feature of Gordian Envelope, allowing parts of
184 /// an envelope to be removed while maintaining the integrity of the digest
185 /// tree. This enables selective disclosure of information.
186 Elided(Digest),
187
188 /// Represents a value from a namespace of unsigned integers used for
189 /// ontological concepts.
190 ///
191 /// Known Values are 64-bit unsigned integers used to represent stand-alone
192 /// ontological concepts like relationships (`isA`, `containedIn`),
193 /// classes (`Seed`, `PrivateKey`), or enumerated values (`MainNet`,
194 /// `OK`). They provide a compact, deterministic alternative to URIs for
195 /// representing common predicates and values.
196 ///
197 /// Using Known Values instead of strings for common predicates offers
198 /// several advantages:
199 /// - More compact representation (integers vs. long strings/URIs)
200 /// - Standardized semantics across implementations
201 /// - Deterministic encoding for cryptographic operations
202 /// - Resistance to manipulation attacks that target string representations
203 ///
204 /// Known Values are displayed with single quotes, e.g., `'isA'` or by their
205 /// numeric value like `'1'` (when no name is assigned).
206 ///
207 /// This variant is only available when the `known_value` feature is
208 /// enabled.
209 #[cfg(feature = "known_value")]
210 KnownValue {
211 /// The Known Value instance containing the integer value and optional
212 /// name
213 value: KnownValue,
214 /// The digest of the known value
215 digest: Digest,
216 },
217
218 /// Represents an envelope that has been encrypted.
219 ///
220 /// Encryption is a privacy feature that allows parts of an envelope to be
221 /// encrypted while maintaining the integrity of the digest tree. The
222 /// encrypted content can only be accessed by those with the appropriate
223 /// key.
224 ///
225 /// This variant is only available when the `encrypt` feature is enabled.
226 #[cfg(feature = "encrypt")]
227 Encrypted(EncryptedMessage),
228
229 /// Represents an envelope that has been compressed.
230 ///
231 /// Compression reduces the size of an envelope while maintaining its full
232 /// content and digest integrity. Unlike elision or encryption, compression
233 /// doesn't restrict access to the content, but simply makes it more
234 /// compact.
235 ///
236 /// This variant is only available when the `compress` feature is enabled.
237 #[cfg(feature = "compress")]
238 Compressed(Compressed),
239}
240
241/// Support for basic envelope creation.
242impl Envelope {
243 /// Creates an envelope with a `subject`, which
244 /// can be any instance that implements ``EnvelopeEncodable``.
245 pub fn new(subject: impl EnvelopeEncodable) -> Self {
246 subject.into_envelope()
247 }
248
249 /// Creates an envelope with a `subject`, which
250 /// can be any instance that implements ``EnvelopeEncodable``.
251 ///
252 /// If `subject` is `None`, returns a null envelope.
253 pub fn new_or_null(subject: Option<impl EnvelopeEncodable>) -> Self {
254 subject.map_or_else(Self::null, Self::new)
255 }
256
257 /// Creates an envelope with a `subject`, which
258 /// can be any instance that implements ``EnvelopeEncodable``.
259 ///
260 /// If `subject` is `None`, returns `None`.
261 pub fn new_or_none(
262 subject: Option<impl EnvelopeEncodable>,
263 ) -> Option<Self> {
264 subject.map(Self::new)
265 }
266
267 /// Creates an assertion envelope with a `predicate` and `object`,
268 /// each of which can be any instance that implements ``EnvelopeEncodable``.
269 pub fn new_assertion(
270 predicate: impl EnvelopeEncodable,
271 object: impl EnvelopeEncodable,
272 ) -> Self {
273 Self::new_with_assertion(Assertion::new(predicate, object))
274 }
275}
276
277/// Internal constructors
278impl Envelope {
279 pub(crate) fn new_with_unchecked_assertions(
280 subject: Self,
281 unchecked_assertions: Vec<Self>,
282 ) -> Self {
283 assert!(!unchecked_assertions.is_empty());
284 let mut sorted_assertions = unchecked_assertions;
285 sorted_assertions.sort_by_key(|a| a.digest());
286 let mut digests = vec![subject.digest()];
287 digests.extend(sorted_assertions.iter().map(|a| a.digest()));
288 let digest = Digest::from_digests(&digests);
289 (EnvelopeCase::Node { subject, assertions: sorted_assertions, digest })
290 .into()
291 }
292
293 pub(crate) fn new_with_assertions(
294 subject: Self,
295 assertions: Vec<Self>,
296 ) -> Result<Self> {
297 if !assertions
298 .iter()
299 .all(|a| a.is_subject_assertion() || a.is_subject_obscured())
300 {
301 return Err(Error::InvalidFormat);
302 }
303 Ok(Self::new_with_unchecked_assertions(subject, assertions))
304 }
305
306 pub(crate) fn new_with_assertion(assertion: Assertion) -> Self {
307 EnvelopeCase::Assertion(assertion).into()
308 }
309
310 #[cfg(feature = "known_value")]
311 pub(crate) fn new_with_known_value(value: KnownValue) -> Self {
312 let digest = value.digest();
313 (EnvelopeCase::KnownValue { value, digest }).into()
314 }
315
316 #[cfg(feature = "encrypt")]
317 pub(crate) fn new_with_encrypted(
318 encrypted_message: EncryptedMessage,
319 ) -> Result<Self> {
320 if !encrypted_message.has_digest() {
321 return Err(Error::MissingDigest);
322 }
323 Ok(EnvelopeCase::Encrypted(encrypted_message).into())
324 }
325
326 #[cfg(feature = "compress")]
327 pub(crate) fn new_with_compressed(compressed: Compressed) -> Result<Self> {
328 if !compressed.has_digest() {
329 return Err(Error::MissingDigest);
330 }
331 Ok(EnvelopeCase::Compressed(compressed).into())
332 }
333
334 pub(crate) fn new_elided(digest: Digest) -> Self {
335 EnvelopeCase::Elided(digest).into()
336 }
337
338 pub(crate) fn new_leaf(value: impl Into<CBOR>) -> Self {
339 let cbor: CBOR = value.into();
340 let digest = Digest::from_image(cbor.to_cbor_data());
341 (EnvelopeCase::Leaf { cbor, digest }).into()
342 }
343
344 pub(crate) fn new_wrapped(envelope: Self) -> Self {
345 let digest = Digest::from_digests(&[envelope.digest()]);
346 (EnvelopeCase::Wrapped { envelope, digest }).into()
347 }
348}
349
350impl AsRef<Envelope> for Envelope {
351 fn as_ref(&self) -> &Envelope { self }
352}
353
354#[cfg(test)]
355mod tests {
356 #[cfg(feature = "compress")]
357 use bc_components::Compressed;
358 use bc_components::DigestProvider;
359
360 #[cfg(feature = "known_value")]
361 use crate::extension::KnownValue;
362 use crate::{Assertion, Envelope};
363
364 #[test]
365 fn test_any_envelope() {
366 let e1 = Envelope::new_leaf("Hello");
367 let e2 = Envelope::new("Hello");
368 assert_eq!(e1.format(), e2.format());
369 assert_eq!(e1.digest(), e2.digest());
370 }
371
372 #[cfg(feature = "known_value")]
373 #[test]
374 fn test_any_known_value() {
375 let known_value = KnownValue::new(100);
376 let e1 = Envelope::new_with_known_value(known_value.clone());
377 let e2 = Envelope::new(known_value);
378 assert_eq!(e1.format(), e2.format());
379 assert_eq!(e1.digest(), e2.digest());
380 }
381
382 #[test]
383 fn test_any_assertion() {
384 let assertion = Assertion::new("knows", "Bob");
385 let e1 = Envelope::new_with_assertion(assertion.clone());
386 let e2 = Envelope::new(assertion);
387 assert_eq!(e1.format(), e2.format());
388 assert_eq!(e1.digest(), e2.digest());
389 }
390
391 #[test]
392 fn test_any_encrypted() {
393 //todo!()
394 }
395
396 #[cfg(feature = "compress")]
397 #[test]
398 fn test_any_compressed() {
399 let data = "Hello".as_bytes();
400 let digest = data.digest();
401 let compressed = Compressed::from_decompressed_data(data, Some(digest));
402 let e1 = Envelope::new_with_compressed(compressed.clone()).unwrap();
403 let e2 = Envelope::try_from(compressed).unwrap();
404 assert_eq!(e1.format(), e2.format());
405 assert_eq!(e1.digest(), e2.digest());
406 }
407
408 #[test]
409 fn test_any_cbor_encodable() {
410 let e1 = Envelope::new_leaf(1);
411 let e2 = Envelope::new(1);
412 assert_eq!(e1.format(), e2.format());
413 assert_eq!(e1.digest(), e2.digest());
414 }
415}