1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
use bc_crypto::RandomNumberGenerator;
use bc_ur::{UREncodable, URDecodable, URCodable};
use dcbor::{CBORTagged, Tag, CBOREncodable, CBOR, CBORTaggedEncodable, CBORDecodable, CBORTaggedDecodable};

use crate::{PrivateKeysDataProvider, SigningPrivateKey, AgreementPrivateKey, PublicKeyBase, tags};

/// Holds unique data from which keys for signing and encryption can be derived.
#[derive(Clone, Eq, PartialEq)]
pub struct PrivateKeyBase(Vec<u8>);

impl PrivateKeyBase {
    /// Generate a new random `PrivateKeyBase`.
    pub fn new() -> Self {
        let mut rng = bc_crypto::SecureRandomNumberGenerator;
        Self::new_using(&mut rng)
    }

    /// Restores a `PrivateKeyBase` from a vector of bytes.
    pub const fn from_vec(data: Vec<u8>) -> Self {
        Self(data)
    }

    /// Restores a `PrivateKeyBase` from a reference to a vector of bytes.
    pub fn from_data(data: &[u8]) -> Self {
        Self(data.to_vec())
    }

    /// Restores a `PrivateKeyBase` from a reference to a vector of bytes.
    pub fn from_data_ref<T>(data: &T) -> Self where T: AsRef<[u8]> {
        Self(data.as_ref().to_vec())
    }

    /// Restores a `PrivateKeyBase` from an optional reference to a vector of bytes.
    ///
    /// If the data is `None`, a new random `PrivateKeyBase` is generated.
    pub fn from_optional_data<D>(data: Option<D>) -> Self where D: AsRef<[u8]> {
        match data {
            Some(data) => Self::from_data_ref(&data),
            None => Self::new(),
        }
    }

    /// Generate a new random `PrivateKeyBase` using the given random number generator.
    pub fn new_using(rng: &mut impl RandomNumberGenerator) -> Self {
        Self::from_vec(rng.random_data(32))
    }

    /// Create a new `PrivateKeyBase` from the given private keys data provider.
    pub fn new_with_provider<T: PrivateKeysDataProvider>(provider: &T) -> Self {
        Self::from_vec(provider.private_keys_data())
    }

    /// Derive a new `SigningPrivateKey` from this `PrivateKeyBase`.
    pub fn signing_private_key(&self) -> SigningPrivateKey {
        SigningPrivateKey::derive_from_key_material(&self.0)
    }

    /// Derive a new `AgreementPrivateKey` from this `PrivateKeyBase`.
    pub fn agreement_private_key(&self) -> AgreementPrivateKey {
        AgreementPrivateKey::derive_from_key_material(&self.0)
    }

    /// Derive a new `PublicKeyBase` from this `PrivateKeyBase`.
    ///
    /// This is a Schnorr public key for signing.
    pub fn public_keys(&self) -> PublicKeyBase {
        PublicKeyBase::new(self.signing_private_key().schnorr_public_key(), self.agreement_private_key().public_key())
    }

    /// Derive a new `PublicKeyBase` from this `PrivateKeyBase`.
    ///
    /// This is an ECDSA public key for signing.
    pub fn ecdsa_public_keys(&self) -> PublicKeyBase {
        PublicKeyBase::new(self.signing_private_key().ecdsa_public_key(), self.agreement_private_key().public_key())
    }

    /// Get the raw data of this `PrivateKeyBase`.
    pub fn data(&self) -> &[u8] {
        self.into()
    }
}

impl Default for PrivateKeyBase {
    fn default() -> Self {
        Self::new()
    }
}

impl std::fmt::Debug for PrivateKeyBase {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "PrivateKeyBase")
    }
}

impl<'a> From<&'a PrivateKeyBase> for &'a [u8] {
    fn from(value: &'a PrivateKeyBase) -> Self {
        &value.0
    }
}

impl CBORTagged for PrivateKeyBase {
    const CBOR_TAG: Tag = tags::PRIVATE_KEYBASE;
}

impl CBOREncodable for PrivateKeyBase {
    fn cbor(&self) -> CBOR {
        self.tagged_cbor()
    }
}

impl CBORTaggedEncodable for PrivateKeyBase {
    fn untagged_cbor(&self) -> CBOR {
        CBOR::byte_string(&self.0)
    }
}

impl UREncodable for PrivateKeyBase { }

impl CBORDecodable for PrivateKeyBase {
    fn from_cbor(cbor: &CBOR) -> Result<Self, dcbor::Error> {
        Self::from_untagged_cbor(cbor)
    }
}

impl CBORTaggedDecodable for PrivateKeyBase {
    fn from_untagged_cbor(untagged_cbor: &CBOR) -> Result<Self, dcbor::Error> {
        let data = CBOR::expect_byte_string(untagged_cbor)?;
        let instance = Self::from_data_ref(&data);
        Ok(instance)
    }
}

impl URDecodable for PrivateKeyBase { }

impl URCodable for PrivateKeyBase { }

#[cfg(test)]
mod tests {
    use bc_ur::{UREncodable, URDecodable};
    use hex_literal::hex;

    use crate::PrivateKeyBase;

    const SEED: [u8; 16] = hex!("59f2293a5bce7d4de59e71b4207ac5d2");

    #[test]
    fn test_private_key_base() {
        let private_key_base = PrivateKeyBase::from_data(&SEED);
        assert_eq!(private_key_base.signing_private_key().data(), &hex!("9505a44aaf385ce633cf0e2bc49e65cc88794213bdfbf8caf04150b9c4905f5a"));
        assert_eq!(private_key_base.signing_private_key().schnorr_public_key().schnorr().unwrap().data(), &hex!("fd4d22f9e8493da52d730aa402ac9e661deca099ef4db5503f519a73c3493e18"));
        assert_eq!(private_key_base.agreement_private_key().data(), &hex!("77ff838285a0403d3618aa8c30491f99f55221be0b944f50bfb371f43b897485"));
        assert_eq!(private_key_base.agreement_private_key().public_key().data(), &hex!("863cf3facee3ba45dc54e5eedecb21d791d64adfb0a1c63bfb6fea366c1ee62b"));

        let ur = private_key_base.ur_string();
        assert_eq!(ur, "ur:crypto-prvkeys/gdhkwzdtfthptokigtvwnnjsqzcxknsktdsfecsbbk");
        assert_eq!(PrivateKeyBase::from_ur_string(&ur).unwrap(), private_key_base);
    }
}