batch_lock/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
use dashmap::{DashMap, Entry};
use std::collections::{BTreeSet, LinkedList};
use std::hash::Hash;
use std::sync::atomic::{AtomicU32, Ordering};

struct WaiterPtr(*const AtomicU32);

impl WaiterPtr {
    fn wake_up(self) {
        let ptr = self.0;
        let waiter = unsafe { &*ptr };
        waiter.store(1, Ordering::Release);
        atomic_wait::wake_one(ptr);
    }
}

unsafe impl Sync for WaiterPtr {}
unsafe impl Send for WaiterPtr {}

pub struct LockManager<K: Eq + Hash> {
    map: DashMap<K, LinkedList<WaiterPtr>>,
}

impl<K: Eq + Hash + Clone> LockManager<K> {
    pub fn new() -> Self {
        Self {
            map: DashMap::new(),
        }
    }

    pub fn with_capacity(capacity: usize) -> Self {
        Self {
            map: DashMap::with_capacity(capacity),
        }
    }

    pub fn with_capacity_and_shard_amount(capacity: usize, shard_amount: usize) -> Self {
        Self {
            map: DashMap::with_capacity_and_shard_amount(capacity, shard_amount),
        }
    }

    pub fn lock(&self, key: K) -> LockGuard<K> {
        self.raw_lock(&key);
        LockGuard::<K> { map: self, key }
    }

    pub fn batch_lock(&self, keys: BTreeSet<K>) -> BatchLockGuard<K> {
        for key in &keys {
            self.raw_lock(key);
        }
        BatchLockGuard::<K> { map: self, keys }
    }

    fn raw_lock(&self, key: &K) {
        let waiter = AtomicU32::new(0);
        match self.map.entry(key.clone()) {
            Entry::Occupied(mut occupied_entry) => {
                occupied_entry.get_mut().push_back(WaiterPtr(&waiter as _));
            }
            Entry::Vacant(vacant_entry) => {
                vacant_entry.insert(Default::default());
                waiter.store(1, Ordering::Release);
            }
        };
        while waiter.load(Ordering::Acquire) == 0 {
            atomic_wait::wait(&waiter, 0);
        }
    }

    fn unlock(&self, key: &K) {
        match self.map.entry(key.clone()) {
            Entry::Occupied(mut occupied_entry) => match occupied_entry.get_mut().pop_front() {
                Some(waiter) => {
                    waiter.wake_up();
                }
                None => {
                    occupied_entry.remove();
                }
            },
            Entry::Vacant(_) => panic!("impossible: unlock a non-existent key!"),
        }
    }

    fn batch_unlock(&self, keys: &BTreeSet<K>) {
        for key in keys.iter().rev() {
            self.unlock(key);
        }
    }
}

impl<K: Eq + Hash + Clone> Default for LockManager<K> {
    fn default() -> Self {
        Self::new()
    }
}

pub struct LockGuard<'a, K: Eq + Hash + Clone> {
    map: &'a LockManager<K>,
    key: K,
}

impl<'a, K: Eq + Hash + Clone> Drop for LockGuard<'a, K> {
    fn drop(&mut self) {
        self.map.unlock(&self.key);
    }
}

pub struct BatchLockGuard<'a, K: Eq + Hash + Clone> {
    map: &'a LockManager<K>,
    keys: BTreeSet<K>,
}

impl<'a, K: Eq + Hash + Clone> Drop for BatchLockGuard<'a, K> {
    fn drop(&mut self) {
        self.map.batch_unlock(&self.keys);
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::sync::{atomic::AtomicUsize, Arc};

    #[test]
    fn test_lock_map_same_key() {
        let lock_map = Arc::new(LockManager::<u32>::new());
        let total = Arc::new(AtomicUsize::default());
        let current = Arc::new(AtomicU32::default());
        const N: usize = 1 << 12;
        const M: usize = 8;

        let threads = (0..M)
            .map(|_| {
                let lock_map = lock_map.clone();
                let total = total.clone();
                let current = current.clone();
                std::thread::spawn(move || {
                    for _ in 0..N {
                        let _guard = lock_map.lock(1);
                        let now = current.fetch_add(1, Ordering::AcqRel);
                        assert_eq!(now, 0);
                        total.fetch_add(1, Ordering::AcqRel);
                        let now = current.fetch_sub(1, Ordering::AcqRel);
                        assert_eq!(now, 1);
                    }
                })
            })
            .collect::<Vec<_>>();
        threads.into_iter().for_each(|t| t.join().unwrap());
        assert_eq!(total.load(Ordering::Acquire), N * M);
    }

    #[test]
    fn test_lock_map_random_key() {
        let lock_map = Arc::new(LockManager::<u32>::with_capacity(128));
        let total = Arc::new(AtomicUsize::default());
        const N: usize = 1 << 20;
        const M: usize = 8;

        let threads = (0..M)
            .map(|_| {
                let lock_map = lock_map.clone();
                let total = total.clone();
                std::thread::spawn(move || {
                    for _ in 0..N {
                        let _guard = lock_map.lock(rand::random());
                        total.fetch_add(1, Ordering::AcqRel);
                    }
                })
            })
            .collect::<Vec<_>>();
        threads.into_iter().for_each(|t| t.join().unwrap());
        assert_eq!(total.load(Ordering::Acquire), N * M);
    }

    #[test]
    fn test_batch_lock() {
        let lock_map = Arc::new(LockManager::<usize>::with_capacity_and_shard_amount(
            128, 16,
        ));
        let total = Arc::new(AtomicUsize::default());
        let current = Arc::new(AtomicU32::default());
        const N: usize = 1 << 12;
        const M: usize = 8;

        let threads = (0..M)
            .map(|i| {
                let lock_map = lock_map.clone();
                let total = total.clone();
                let current = current.clone();
                let state = (0..M).filter(|v| *v != i).collect::<BTreeSet<_>>();
                std::thread::spawn(move || {
                    for _ in 0..N {
                        let _guard = lock_map.batch_lock(state.clone());
                        let now = current.fetch_add(1, Ordering::AcqRel);
                        assert_eq!(now, 0);
                        total.fetch_add(1, Ordering::AcqRel);
                        let now = current.fetch_sub(1, Ordering::AcqRel);
                        assert_eq!(now, 1);
                    }
                })
            })
            .collect::<Vec<_>>();
        threads.into_iter().for_each(|t| t.join().unwrap());
        assert_eq!(total.load(Ordering::Acquire), N * M);
    }

    #[test]
    #[should_panic(expected = "impossible: unlock a non-existent key!")]
    fn test_invalid_unlock() {
        let lock_map = LockManager::<u32>::default();
        let _lock_guard = LockGuard {
            map: &lock_map,
            key: 42,
        };
    }
}