1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
#![doc = include_str!("../README.md")]
#![doc = include_str!("example.md")]
use futures_core::future::BoxFuture;
use mutex::PinnedCondvar as Condvar;
use mutex::PinnedMutex as Mutex;
use mutex::PinnedMutexGuard as MutexGuard;
use pin_project::pin_project;
#[cfg(feature = "parking_lot")]
use pinned_mutex::parking_lot as mutex;
#[cfg(not(feature = "parking_lot"))]
use pinned_mutex::std as mutex;
use std::cmp::min;
use std::collections::VecDeque;
use std::fmt;
use std::future::Future;
use std::iter::Peekable;
use std::pin::Pin;
use std::sync::OnceLock;
use std::task::Context;
use std::task::Poll;
use wakerset::WakerList;
use wakerset::WakerSlot;
const UNBOUNDED_CAPACITY: usize = usize::MAX;
macro_rules! derive_clone {
($t:ident) => {
impl<T> Clone for $t<T> {
fn clone(&self) -> Self {
Self {
core: self.core.clone(),
}
}
}
};
}
#[derive(Debug)]
#[pin_project]
struct StateBase {
capacity: usize,
closed: bool,
#[pin]
tx_wakers: WakerList,
#[pin]
rx_wakers: WakerList,
}
impl StateBase {
fn target_capacity(&self) -> usize {
// TODO: We could offer an option to use queue.capacity
// instead.
self.capacity
}
fn pending_tx<T>(
self: Pin<&mut StateBase>,
slot: Pin<&mut WakerSlot>,
cx: &mut Context,
) -> Poll<T> {
// This may allocate, but only when the sender is about to
// block, which is already expensive.
self.project().tx_wakers.link(slot, cx.waker().clone());
Poll::Pending
}
fn pending_rx<T>(
self: Pin<&mut StateBase>,
slot: Pin<&mut WakerSlot>,
cx: &mut Context,
) -> Poll<T> {
// This may allocate, but only when the receiver is about to
// block, which is already expensive.
self.project().rx_wakers.link(slot, cx.waker().clone());
Poll::Pending
}
}
#[derive(Debug)]
#[pin_project]
struct State<T> {
#[pin]
base: StateBase,
queue: VecDeque<T>,
}
impl<T> State<T> {
fn has_capacity(&self) -> bool {
self.queue.len() < self.target_capacity()
}
fn base(self: Pin<&mut Self>) -> Pin<&mut StateBase> {
self.project().base
}
}
impl<T> std::ops::Deref for State<T> {
type Target = StateBase;
fn deref(&self) -> &Self::Target {
&self.base
}
}
impl<T> std::ops::DerefMut for State<T> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.base
}
}
#[derive(Debug)]
#[pin_project]
struct Core<T> {
#[pin]
state: Mutex<State<T>>,
// OnceLock ensures Core is Sync and Arc<Core> is Send. But it is
// not strictly necessary, as these condition variables are only
// accessed while the lock is held. Alas, Rust does not allow
// Condvar to be stored under the Mutex.
not_empty: OnceLock<Condvar>,
not_full: OnceLock<Condvar>,
}
impl<T> Core<T> {
/// Returns when there is a value or there are no values and all
/// senders are dropped.
fn block_until_not_empty(self: Pin<&Self>) -> MutexGuard<'_, State<T>> {
fn condition<T>(s: Pin<&mut State<T>>) -> bool {
!s.closed && s.queue.is_empty()
}
let mut state = self.project_ref().state.lock();
if !condition(state.as_mut()) {
return state;
}
// Initialize the condvar while the lock is held. Thus, the
// caller can, while the lock is held, check whether the
// condvar must be notified.
let not_empty = self.not_empty.get_or_init(Default::default);
not_empty.wait_while(state, condition)
}
/// Returns when there is either room in the queue or all receivers
/// are dropped.
fn block_until_not_full(self: Pin<&Self>) -> MutexGuard<'_, State<T>> {
fn condition<T>(s: Pin<&mut State<T>>) -> bool {
!s.closed && !s.has_capacity()
}
let mut state = self.project_ref().state.lock();
if !condition(state.as_mut()) {
return state;
}
// Initialize the condvar while the lock is held. Thus, the
// caller can, while the lock is held, check whether the
// condvar must be notified.
let not_full = self.not_full.get_or_init(Default::default);
not_full.wait_while(state, condition)
}
/// Returns when there is either room in the queue or all receivers
/// are dropped.
fn wake_rx_and_block_while_full<'a>(
self: Pin<&'a Self>,
mut state: MutexGuard<'a, State<T>>,
) -> MutexGuard<'a, State<T>> {
// The lock is held. Therefore, we know whether a Condvar must
// be notified or not.
let cvar = self.not_empty.get();
// We should not wake Wakers while a lock is held. Therefore,
// we must release the lock and reacquire it to wait.
let mut wakers = state
.as_mut()
.project()
.base
.project()
.rx_wakers
.extract_some_wakers();
// TODO: Avoid unlocking and locking again when there's no
// waker or condition variable.
drop(state);
if let Some(cvar) = cvar {
// TODO: There are situations where we may know that we
// can get away with notify_one().
cvar.notify_all();
}
// There is no guarantee that the highest-priority waker will
// actually call poll() again. Therefore, the best we can do
// is wake everyone.
while wakers.wake_all() {
let mut state = self.project_ref().state.lock();
wakers.extract_more(state.as_mut().base().project().rx_wakers);
}
// Lock again to block while full.
let state = self.project_ref().state.lock();
// Initialize the condvar while the lock is held. Thus, the
// caller can, while the lock is held, check whether the
// condvar must be notified.
let not_full = self.not_full.get_or_init(Default::default);
not_full.wait_while(state, |s| !s.closed && !s.has_capacity())
}
fn wake_all_tx(self: Pin<&Self>, mut state: MutexGuard<State<T>>) {
// The lock is held. Therefore, we know whether a Condvar must be notified or not.
let cvar = self.not_full.get();
let mut wakers = state
.as_mut()
.project()
.base
.project()
.tx_wakers
.extract_some_wakers();
drop(state);
if let Some(cvar) = cvar {
// TODO: There are situations where we may know that we
// can get away with notify_one().
cvar.notify_all();
}
// There is no guarantee that the highest-priority waker will
// actually call poll() again. Therefore, the best we can do
// is wake everyone.
while wakers.wake_all() {
let mut state = self.project_ref().state.lock();
wakers.extract_more(state.as_mut().project().base.project().tx_wakers);
}
}
fn wake_all_rx(self: Pin<&Self>, mut state: MutexGuard<State<T>>) {
// The lock is held. Therefore, we know whether a Condvar must be notified or not.
let cvar = self.not_empty.get();
let mut wakers = state
.as_mut()
.project()
.base
.project()
.rx_wakers
.extract_some_wakers();
drop(state);
if let Some(cvar) = cvar {
cvar.notify_all();
}
// There is no guarantee that the highest-priority waker will
// actually call poll() again. Therefore, the best we can do
// is wake everyone.
while wakers.wake_all() {
let mut state = self.project_ref().state.lock();
wakers.extract_more(state.as_mut().project().base.project().rx_wakers);
}
}
}
impl<T> splitrc::Notify for Core<T> {
fn last_tx_did_drop_pinned(self: Pin<&Self>) {
let mut state = self.project_ref().state.lock();
*state.as_mut().base().project().closed = true;
// We cannot deallocate the queue, as remaining receivers can
// drain it.
self.wake_all_rx(state);
}
fn last_rx_did_drop_pinned(self: Pin<&Self>) {
let mut state = self.project_ref().state.lock();
*state.as_mut().base().project().closed = true;
// TODO: deallocate
state.as_mut().project().queue.clear();
self.wake_all_tx(state);
}
}
// SendError
/// An error returned from [Sender::send] when all [Receiver]s are
/// dropped.
///
/// The unsent value is returned.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub struct SendError<T>(pub T);
impl<T> fmt::Display for SendError<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "failed to send value on channel")
}
}
impl<T: fmt::Debug> std::error::Error for SendError<T> {}
// SyncSender
/// The sending half of a channel.
#[derive(Debug)]
pub struct SyncSender<T> {
core: Pin<splitrc::Tx<Core<T>>>,
}
derive_clone!(SyncSender);
impl<T> SyncSender<T> {
/// Converts `SyncSender` to asynchronous `Sender`.
pub fn into_async(self) -> Sender<T> {
Sender { core: self.core }
}
/// Send a single value.
///
/// Returns [SendError] if all receivers are dropped.
pub fn send(&self, value: T) -> Result<(), SendError<T>> {
let mut state = self.core.as_ref().block_until_not_full();
if state.closed {
assert!(state.as_ref().project_ref().queue.is_empty());
return Err(SendError(value));
}
state.as_mut().project().queue.push_back(value);
self.core.as_ref().wake_all_rx(state);
Ok(())
}
/// Send multiple values.
///
/// If all receivers are dropped, SendError is returned. The
/// values cannot be returned, as they may have been partially
/// sent when the channel is closed.
pub fn send_iter<I>(&self, values: I) -> Result<(), SendError<()>>
where
I: IntoIterator<Item = T>,
{
let mut values = values.into_iter();
// If the iterator is empty, we can avoid acquiring the lock.
let Some(mut value) = values.next() else {
return Ok(());
};
let mut state = self.core.as_ref().block_until_not_full();
'outer: loop {
if state.closed {
// We may have sent some values, but the receivers are
// all dropped, and that cleared the queue.
assert!(state.queue.is_empty());
return Err(SendError(()));
}
debug_assert!(state.has_capacity());
state.as_mut().project().queue.push_back(value);
loop {
match values.next() {
Some(v) => {
if state.has_capacity() {
state.as_mut().project().queue.push_back(v);
} else {
value = v;
// We're about to block, but we know we
// sent at least one value, so wake any
// waiters.
state = self.core.as_ref().wake_rx_and_block_while_full(state);
continue 'outer;
}
}
None => {
// Done pulling from the iterator and know we
// sent at least one value.
self.core.as_ref().wake_all_rx(state);
return Ok(());
}
}
}
}
}
/// Drain a [Vec] into the channel without deallocating it.
///
/// This is a convenience method for allocation-free batched
/// sends. The `values` vector is drained, and then returned with
/// the same capacity it had.
pub fn send_vec(&self, mut values: Vec<T>) -> Result<Vec<T>, SendError<Vec<T>>> {
match self.send_iter(values.drain(..)) {
Ok(_) => Ok(values),
Err(_) => Err(SendError(values)),
}
}
/// Automatically accumulate sends into a buffer of size `batch_limit`
/// and send when full.
pub fn autobatch<'a, F, R>(&'a mut self, batch_limit: usize, f: F) -> Result<R, SendError<()>>
where
F: (FnOnce(&mut SyncBatchSender<'a, T>) -> Result<R, SendError<()>>),
{
let mut tx = SyncBatchSender {
sender: self,
capacity: batch_limit,
buffer: Vec::with_capacity(batch_limit),
};
let r = f(&mut tx)?;
tx.drain()?;
Ok(r)
}
}
// SyncBatchSender
/// Automatically batches up values and sends them when a batch is full.
#[derive(Debug)]
pub struct SyncBatchSender<'a, T> {
sender: &'a mut SyncSender<T>,
capacity: usize,
buffer: Vec<T>,
}
impl<'a, T> SyncBatchSender<'a, T> {
/// Buffers a single value to be sent on the channel.
///
/// Sends the batch if the buffer is full.
pub fn send(&mut self, value: T) -> Result<(), SendError<()>> {
self.buffer.push(value);
// TODO: consider using the full capacity if Vec overallocated.
if self.buffer.len() == self.capacity {
self.drain()
} else {
Ok(())
}
}
/// Buffers multiple values, sending batches as the internal
/// buffer reaches capacity.
pub fn send_iter<I: IntoIterator<Item = T>>(&mut self, values: I) -> Result<(), SendError<()>> {
// TODO: We could return the remainder of I under cancellation.
for value in values.into_iter() {
self.send(value)?;
}
Ok(())
}
/// Sends any buffered values, clearing the current batch.
pub fn drain(&mut self) -> Result<(), SendError<()>> {
// TODO: send_iter
match self.sender.send_vec(std::mem::take(&mut self.buffer)) {
Ok(drained_vec) => {
self.buffer = drained_vec;
Ok(())
}
Err(_) => Err(SendError(())),
}
}
}
// Sender
/// The asynchronous sending half of a channel.
#[derive(Debug)]
pub struct Sender<T> {
core: Pin<splitrc::Tx<Core<T>>>,
}
derive_clone!(Sender);
impl<T> Sender<T> {
/// Converts asynchronous `Sender` to `SyncSender`.
pub fn into_sync(self) -> SyncSender<T> {
SyncSender { core: self.core }
}
/// Send a single value.
///
/// Returns [SendError] if all receivers are dropped.
pub fn send(&self, value: T) -> impl Future<Output = Result<(), SendError<T>>> + '_ {
Send {
sender: self,
value: Some(value),
waker: WakerSlot::new(),
}
}
/// Send multiple values.
///
/// If all receivers are dropped, SendError is returned and unsent
/// values are dropped.
pub fn send_iter<'a, I>(
&'a self,
values: I,
) -> impl Future<Output = Result<(), SendError<()>>> + 'a
where
I: IntoIterator<Item = T> + 'a,
{
SendIter {
sender: self,
values: Some(values.into_iter().peekable()),
waker: WakerSlot::new(),
}
}
/// Automatically accumulate sends into a buffer of size `batch_limit`
/// and send when full.
///
/// The callback's future must be boxed to work around [type
/// system limitations in
/// Rust](https://smallcultfollowing.com/babysteps/blog/2023/03/29/thoughts-on-async-closures/).
pub async fn autobatch<F, R>(self, batch_limit: usize, f: F) -> Result<R, SendError<()>>
where
for<'a> F: (FnOnce(&'a mut BatchSender<T>) -> BoxFuture<'a, Result<R, SendError<()>>>),
{
let mut tx = BatchSender {
sender: self,
batch_limit,
buffer: Vec::with_capacity(batch_limit),
};
let r = f(&mut tx).await?;
tx.drain().await?;
Ok(r)
}
/// Same as [Sender::autobatch] except that it immediately returns
/// () when `f` returns [SendError]. This is a convenience wrapper
/// for the common case that the future is passed to a spawn
/// function and the receiver being dropped (i.e. [SendError]) is
/// considered a clean cancellation.
pub async fn autobatch_or_cancel<F>(self, capacity: usize, f: F)
where
for<'a> F: (FnOnce(&'a mut BatchSender<T>) -> BoxFuture<'a, Result<(), SendError<()>>>),
{
self.autobatch(capacity, f).await.unwrap_or(())
}
}
#[must_use = "futures do nothing unless you `.await` or poll them"]
#[pin_project]
struct Send<'a, T> {
sender: &'a Sender<T>,
value: Option<T>,
#[pin]
waker: WakerSlot,
}
impl<'a, T> Future for Send<'a, T> {
type Output = Result<(), SendError<T>>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let mut state = self.sender.core.as_ref().project_ref().state.lock();
if state.closed {
return Poll::Ready(Err(SendError(self.project().value.take().unwrap())));
}
if state.has_capacity() {
state
.as_mut()
.project()
.queue
.push_back(self.as_mut().project().value.take().unwrap());
self.project().sender.core.as_ref().wake_all_rx(state);
Poll::Ready(Ok(()))
} else {
state.as_mut().base().pending_tx(self.project().waker, cx)
}
}
}
#[must_use = "futures do nothing unless you `.await` or poll them"]
#[pin_project]
struct SendIter<'a, T, I: Iterator<Item = T>> {
sender: &'a Sender<T>,
values: Option<Peekable<I>>,
#[pin]
waker: WakerSlot,
}
impl<'a, T, I: Iterator<Item = T>> Future for SendIter<'a, T, I> {
type Output = Result<(), SendError<()>>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
// Optimize the case that send_iter was called with an empty
// iterator, and don't even acquire the lock.
{
let pi = self.as_mut().project().values.as_mut().unwrap();
if pi.peek().is_none() {
return Poll::Ready(Ok(()));
}
// Satisfy borrow checker: we cannot hold a mut reference to
// self through pi before acquiring the lock below.
}
let mut state = self.sender.core.as_ref().project_ref().state.lock();
// There is an awkward set of constraints here.
// 1. To check whether an iterator contains an item, one must be popped.
// 2. If the receivers are cancelled, we'd like to return the iterator whole.
// 3. If we don't know whether there are any remaining items, we must block
// if the queue is at capacity.
// We relax constraint #2 because #3 is preferable.
// TODO: We could return Peekable<I> instead.
let pi = self.as_mut().project().values.as_mut().unwrap();
// We already checked above.
debug_assert!(pi.peek().is_some());
if state.closed {
Poll::Ready(Err(SendError(())))
} else if !state.has_capacity() {
// We know we have a value to send, but there is no room.
state.as_mut().base().pending_tx(self.project().waker, cx)
} else {
debug_assert!(state.has_capacity());
state.as_mut().project().queue.push_back(pi.next().unwrap());
while state.has_capacity() {
match pi.next() {
Some(value) => {
state.as_mut().project().queue.push_back(value);
}
None => {
// Done pulling from the iterator and still
// have capacity, so we're done.
self.sender.core.as_ref().wake_all_rx(state);
return Poll::Ready(Ok(()));
}
}
}
// We're out of capacity, and might still have items to
// send. To avoid a round-trip through the scheduler, peek
// ahead.
if pi.peek().is_none() {
self.sender.core.as_ref().wake_all_rx(state);
return Poll::Ready(Ok(()));
}
// Unconditionally returns Poll::Pending
let pending = state
.as_mut()
.base()
.pending_tx(self.as_mut().project().waker, cx);
self.sender.core.as_ref().wake_all_rx(state);
pending
}
}
}
// BatchSender
/// The internal send handle used by [Sender::autobatch].
/// Builds a buffer of size `batch_limit` and flushes when it's full.
pub struct BatchSender<T> {
sender: Sender<T>,
batch_limit: usize,
buffer: Vec<T>,
}
impl<T> BatchSender<T> {
/// Adds a value to the internal buffer and flushes it into the
/// queue when the buffer fills.
pub async fn send(&mut self, value: T) -> Result<(), SendError<()>> {
self.buffer.push(value);
if self.buffer.len() == self.batch_limit {
self.drain().await?;
}
Ok(())
}
async fn drain(&mut self) -> Result<(), SendError<()>> {
self.sender.send_iter(self.buffer.drain(..)).await?;
assert!(self.buffer.is_empty());
Ok(())
}
}
// Receiver
/// The receiving half of a channel. Reads are asynchronous.
#[derive(Debug)]
pub struct Receiver<T> {
core: Pin<splitrc::Rx<Core<T>>>,
}
derive_clone!(Receiver);
#[must_use = "futures do nothing unless you `.await` or poll them"]
#[pin_project]
struct Recv<'a, T> {
receiver: &'a Receiver<T>,
#[pin]
waker: WakerSlot,
}
impl<'a, T> Future for Recv<'a, T> {
type Output = Option<T>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let mut state = self.receiver.core.as_ref().project_ref().state.lock();
match state.as_mut().project().queue.pop_front() {
Some(value) => {
self.receiver.core.as_ref().wake_all_tx(state);
Poll::Ready(Some(value))
}
None => {
if state.closed {
Poll::Ready(None)
} else {
state.as_mut().base().pending_rx(self.project().waker, cx)
}
}
}
}
}
#[must_use = "futures do nothing unless you .await or poll them"]
#[pin_project]
struct RecvBatch<'a, T> {
receiver: &'a Receiver<T>,
element_limit: usize,
#[pin]
waker: WakerSlot,
}
impl<'a, T> Future for RecvBatch<'a, T> {
type Output = Vec<T>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let mut state = self.receiver.core.as_ref().project_ref().state.lock();
let q = &mut state.as_mut().project().queue;
let q_len = q.len();
if q_len == 0 {
if state.closed {
return Poll::Ready(Vec::new());
} else {
return state.as_mut().base().pending_rx(self.project().waker, cx);
}
}
let capacity = min(q_len, self.element_limit);
let v = Vec::from_iter(q.drain(..capacity));
self.receiver.core.as_ref().wake_all_tx(state);
Poll::Ready(v)
}
}
#[must_use = "futures do nothing unless you .await or poll them"]
#[pin_project]
struct RecvVec<'a, T> {
receiver: &'a Receiver<T>,
element_limit: usize,
vec: &'a mut Vec<T>,
#[pin]
waker: WakerSlot,
}
impl<'a, T> Future for RecvVec<'a, T> {
type Output = ();
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let mut state = self.receiver.core.as_ref().project_ref().state.lock();
let q = &mut state.as_mut().project().queue;
let q_len = q.len();
if q_len == 0 {
if state.closed {
assert!(self.vec.is_empty());
return Poll::Ready(());
} else {
return state.as_mut().base().pending_rx(self.project().waker, cx);
}
}
let capacity = min(q_len, self.element_limit);
self.as_mut().project().vec.extend(q.drain(..capacity));
self.project().receiver.core.as_ref().wake_all_tx(state);
Poll::Ready(())
}
}
impl<T> Receiver<T> {
/// Converts asynchronous `Receiver` to `SyncReceiver`.
pub fn into_sync(self) -> SyncReceiver<T> {
SyncReceiver { core: self.core }
}
/// Wait for a single value from the channel.
///
/// Returns [None] if all [Sender]s are dropped.
pub fn recv(&self) -> impl Future<Output = Option<T>> + '_ {
Recv {
receiver: self,
waker: WakerSlot::new(),
}
}
// TODO: try_recv
/// Wait for up to `element_limit` values from the channel.
///
/// Up to `element_limit` values are returned if they're already
/// available. Otherwise, waits for any values to be available.
///
/// Returns an empty [Vec] if all [Sender]s are dropped.
pub fn recv_batch(&self, element_limit: usize) -> impl Future<Output = Vec<T>> + '_ {
RecvBatch {
receiver: self,
element_limit,
waker: WakerSlot::new(),
}
}
// TODO: try_recv_batch
/// Wait for up to `element_limit` values from the channel and
/// store them in `vec`.
///
/// `vec` should be empty when passed in. Nevertheless, `recv_vec`
/// will clear it before adding values. The intent of `recv_vec`
/// is that batches can be repeatedly read by workers without new
/// allocations.
///
/// It's not required, but `vec`'s capacity should be greater than
/// or equal to element_limit to avoid reallocation.
pub fn recv_vec<'a>(
&'a self,
element_limit: usize,
vec: &'a mut Vec<T>,
) -> impl Future<Output = ()> + 'a {
vec.clear();
RecvVec {
receiver: self,
element_limit,
vec,
waker: WakerSlot::new(),
}
}
// TODO: try_recv_vec
}
// SyncReceiver
/// The synchronous receiving half of a channel.
#[derive(Debug)]
pub struct SyncReceiver<T> {
core: Pin<splitrc::Rx<Core<T>>>,
}
derive_clone!(SyncReceiver);
impl<T> SyncReceiver<T> {
/// Converts `SyncReceiver` to asynchronous `Receiver`.
pub fn into_async(self) -> Receiver<T> {
Receiver { core: self.core }
}
/// Block waiting for a single value from the channel.
///
/// Returns [None] if all [Sender]s are dropped.
pub fn recv(&self) -> Option<T> {
let mut state = self.core.as_ref().block_until_not_empty();
match state.as_mut().project().queue.pop_front() {
Some(value) => {
self.core.as_ref().wake_all_tx(state);
Some(value)
}
None => {
assert!(state.closed);
None
}
}
}
/// Block waiting for values from the channel.
///
/// Up to `element_limit` values are returned if they're already
/// available. Otherwise, waits for any values to be available.
///
/// Returns an empty [Vec] if all [Sender]s are dropped.
pub fn recv_batch(&self, element_limit: usize) -> Vec<T> {
let mut state = self.core.as_ref().block_until_not_empty();
let q = &mut state.as_mut().project().queue;
let q_len = q.len();
if q_len == 0 {
assert!(state.closed);
return Vec::new();
}
let capacity = min(q_len, element_limit);
let v = Vec::from_iter(q.drain(..capacity));
self.core.as_ref().wake_all_tx(state);
v
}
/// Wait for up to `element_limit` values from the channel and
/// store them in `vec`.
///
/// `vec` should be empty when passed in. Nevertheless, `recv_vec`
/// will clear it before adding values. The intent of `recv_vec`
/// is that batches can be repeatedly read by workers without new
/// allocations.
///
/// It's not required, but `vec`'s capacity should be greater than
/// or equal to element_limit to avoid reallocation.
pub fn recv_vec(&self, element_limit: usize, vec: &mut Vec<T>) {
vec.clear();
let mut state = self.core.as_ref().block_until_not_empty();
let q = &mut state.as_mut().project().queue;
let q_len = q.len();
if q_len == 0 {
assert!(state.closed);
// The result vector is already cleared.
return;
}
let capacity = min(q_len, element_limit);
vec.extend(q.drain(..capacity));
self.core.as_ref().wake_all_tx(state);
}
}
// Constructors
/// Allocates a bounded channel and returns the sender, receiver
/// pair.
///
/// Rust async is polling, so unbuffered channels are not supported.
/// Therefore, a capacity of 0 is rounded up to 1.
pub fn bounded<T>(capacity: usize) -> (Sender<T>, Receiver<T>) {
let capacity = capacity.max(1);
let core = Core {
state: Mutex::new(State {
base: StateBase {
capacity,
closed: false,
tx_wakers: WakerList::new(),
rx_wakers: WakerList::new(),
},
queue: VecDeque::new(),
}),
not_empty: OnceLock::new(),
not_full: OnceLock::new(),
};
let (core_tx, core_rx) = splitrc::pin(core);
(Sender { core: core_tx }, Receiver { core: core_rx })
}
/// Allocates a bounded channel and returns the synchronous handles as
/// a sender, receiver pair.
///
/// Because handles can be converted freely between sync and async,
/// and Rust async is polling, unbuffered channels are not
/// supported. A capacity of 0 is rounded up to 1.
pub fn bounded_sync<T>(capacity: usize) -> (SyncSender<T>, SyncReceiver<T>) {
let (tx, rx) = bounded(capacity);
(tx.into_sync(), rx.into_sync())
}
/// Allocates an unbounded channel and returns the sender,
/// receiver pair.
pub fn unbounded<T>() -> (Sender<T>, Receiver<T>) {
let core = Core {
state: Mutex::new(State {
base: StateBase {
capacity: UNBOUNDED_CAPACITY,
closed: false,
tx_wakers: WakerList::new(),
rx_wakers: WakerList::new(),
},
queue: VecDeque::new(),
}),
not_empty: OnceLock::new(),
not_full: OnceLock::new(),
};
let (core_tx, core_rx) = splitrc::pin(core);
(Sender { core: core_tx }, Receiver { core: core_rx })
}
/// Allocates an unbounded channel and returns the synchronous handles
/// as a sender, receiver pair.
pub fn unbounded_sync<T>() -> (SyncSender<T>, SyncReceiver<T>) {
let (tx, rx) = unbounded();
(tx.into_sync(), rx.into_sync())
}