1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
#![doc = include_str!("../README.md")]
use std::cmp::min;
use std::collections::VecDeque;
use std::fmt;
use std::future::Future;
use std::pin::Pin;
use std::sync::Arc;
use std::sync::Mutex;
use std::sync::MutexGuard;
use std::task::Context;
use std::task::Poll;
use std::task::Waker;
// TODO: we could replace Arc with Box and rely on atomic tx_count and
// rx_count.
#[derive(Debug)]
struct State<T> {
queue: VecDeque<T>,
tx_count: usize,
rx_count: usize,
rx_wakers: Vec<Waker>,
}
fn wake_all<T>(mut state: MutexGuard<State<T>>) {
let wakers = std::mem::take(&mut state.rx_wakers);
drop(state);
for waker in wakers {
waker.wake();
}
}
/// The sending half of a channel.
#[derive(Debug)]
pub struct Sender<T> {
state: Arc<Mutex<State<T>>>,
}
impl<T> Clone for Sender<T> {
fn clone(&self) -> Self {
self.state.lock().unwrap().tx_count += 1;
Sender {
state: self.state.clone(),
}
}
}
impl<T> Drop for Sender<T> {
fn drop(&mut self) {
let mut state = self.state.lock().unwrap();
assert!(state.tx_count >= 1);
state.tx_count -= 1;
if state.tx_count == 0 {
wake_all(state);
}
}
}
/// An error returned from [Sender::send] when all [Receiver]s are
/// dropped.
///
/// The unsent value is returned.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub struct SendError<T>(pub T);
impl<T> fmt::Display for SendError<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "failed to send value on channel")
}
}
impl<T: fmt::Debug> std::error::Error for SendError<T> {}
impl<T> Sender<T> {
/// Send a single value.
///
/// Returns [SendError] if all receivers are dropped.
pub fn send(&self, value: T) -> Result<(), SendError<T>> {
let mut state = self.state.lock().unwrap();
if state.rx_count == 0 {
assert!(state.queue.is_empty());
return Err(SendError(value));
}
state.queue.push_back(value);
// There is no guarantee that the highest-priority waker will
// actually call poll() again. Therefore, the best we can do
// is wake everyone.
wake_all(state);
Ok(())
}
/// Send multiple values.
///
/// If all receivers are dropped, the values are returned in
/// [SendError] untouched. Either the entire batch is sent or none
/// of it is sent.
pub fn send_iter<I>(&self, values: I) -> Result<(), SendError<I>>
where
I: IntoIterator<Item = T>,
{
let mut state = self.state.lock().unwrap();
if state.rx_count == 0 {
assert!(state.queue.is_empty());
return Err(SendError(values));
}
state.queue.extend(values.into_iter());
// There is no guarantee that the highest-priority waker will
// actually call poll() again. Therefore, the best we can do
// is wake everyone.
wake_all(state);
Ok(())
}
/// Drain a [Vec] into the channel without deallocating it.
///
/// This is a convenience method for allocation-free batched
/// sends. The `values` vector is drained, and then returned with
/// the same capacity it had.
pub fn send_vec(&self, mut values: Vec<T>) -> Result<Vec<T>, SendError<Vec<T>>> {
let mut state = self.state.lock().unwrap();
if state.rx_count == 0 {
assert!(state.queue.is_empty());
return Err(SendError(values));
}
state.queue.extend(values.drain(..));
// There is no guarantee that the highest-priority waker will
// actually call poll() again. Therefore, the best we can do
// is wake everyone.
wake_all(state);
Ok(values)
}
/// Converts this [Sender] into a [BatchSender] with the specified
/// capacity.
///
/// [BatchSender] manages a single allocation containing
/// `capacity` elements and automatically sends batches as it
/// fills.
pub fn batch(self, capacity: usize) -> BatchSender<T> {
BatchSender {
sender: self,
capacity,
buffer: Vec::with_capacity(capacity),
}
}
}
/// Automatically sends values on the channel in batches.
///
/// Any unsent values are sent upon drop.
#[derive(Debug)]
pub struct BatchSender<T> {
sender: Sender<T>,
capacity: usize,
buffer: Vec<T>,
}
/// Sends remaining values.
impl<T> Drop for BatchSender<T> {
fn drop(&mut self) {
if self.buffer.is_empty() {
return;
}
// If receivers dropped, there's nothing we can do with any
// held values.
_ = self.sender.send_vec(std::mem::take(&mut self.buffer));
}
}
impl<T> BatchSender<T> {
/// Buffers a single value to be sent on the channel.
///
/// Sends the batch if the buffer is full.
pub fn send(&mut self, value: T) -> Result<(), SendError<()>> {
self.buffer.push(value);
// TODO: consider using the full capacity if Vec overallocated.
if self.buffer.len() == self.capacity {
match self.sender.send_vec(std::mem::take(&mut self.buffer)) {
Ok(drained_vec) => {
self.buffer = drained_vec;
}
Err(_) => {
return Err(SendError(()));
}
}
}
Ok(())
}
/// Buffers multiple values, sending batches as the internal
/// buffer reaches capacity.
pub fn send_iter<I: IntoIterator<Item = T>>(&mut self, values: I) -> Result<(), SendError<()>> {
for value in values.into_iter() {
self.send(value)?;
}
Ok(())
}
// TODO: add a drain method?
}
/// The receiving half of a channel.
#[derive(Debug)]
pub struct Receiver<T> {
state: Arc<Mutex<State<T>>>,
}
impl<T> Clone for Receiver<T> {
fn clone(&self) -> Self {
self.state.lock().unwrap().rx_count += 1;
Receiver {
state: self.state.clone(),
}
}
}
impl<T> Drop for Receiver<T> {
fn drop(&mut self) {
let mut state = self.state.lock().unwrap();
assert!(state.rx_count >= 1);
state.rx_count -= 1;
if state.rx_count == 0 {
state.queue.clear();
}
}
}
#[must_use = "futures do nothing unless you `.await` or poll them"]
struct Recv<'a, T> {
receiver: &'a Receiver<T>,
}
impl<'a, T> Unpin for Recv<'a, T> {}
impl<'a, T> Future for Recv<'a, T> {
type Output = Option<T>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let mut state = self.receiver.state.lock().unwrap();
match state.queue.pop_front() {
Some(value) => Poll::Ready(Some(value)),
None => {
if state.tx_count == 0 {
Poll::Ready(None)
} else {
state.rx_wakers.push(cx.waker().clone());
Poll::Pending
}
}
}
}
}
#[must_use = "futures do nothing unless you .await or poll them"]
struct RecvBatch<'a, T> {
receiver: &'a Receiver<T>,
element_limit: usize,
}
impl<'a, T> Unpin for RecvBatch<'a, T> {}
impl<'a, T> Future for RecvBatch<'a, T> {
type Output = Vec<T>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let mut state = self.receiver.state.lock().unwrap();
let q = &mut state.queue;
let q_len = q.len();
if q_len == 0 {
if state.tx_count == 0 {
return Poll::Ready(Vec::new());
} else {
state.rx_wakers.push(cx.waker().clone());
return Poll::Pending;
}
}
let capacity = min(q_len, self.element_limit);
let v = Vec::from_iter(q.drain(..capacity));
Poll::Ready(v)
}
}
#[must_use = "futures do nothing unless you .await or poll them"]
struct RecvVec<'a, T> {
receiver: &'a Receiver<T>,
element_limit: usize,
vec: &'a mut Vec<T>,
}
impl<'a, T> Unpin for RecvVec<'a, T> {}
impl<'a, T> Future for RecvVec<'a, T> {
type Output = ();
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let mut state = self.receiver.state.lock().unwrap();
let q = &mut state.queue;
let q_len = q.len();
if q_len == 0 {
if state.tx_count == 0 {
assert!(self.vec.is_empty());
return Poll::Ready(());
} else {
state.rx_wakers.push(cx.waker().clone());
return Poll::Pending;
}
}
let capacity = min(q_len, self.element_limit);
self.vec.extend(q.drain(..capacity));
Poll::Ready(())
}
}
impl<T> Receiver<T> {
/// Wait for a single value from the channel.
///
/// Returns [None] if all [Sender]s are dropped.
pub fn recv(&self) -> impl Future<Output = Option<T>> + '_ {
Recv { receiver: self }
}
// TODO: try_recv
/// Wait for up to `element_limit` values from the channel.
///
/// Up to `element_limit` values are returned if they're already
/// available. Otherwise, waits for any values to be available.
///
/// Returns an empty [Vec] if all [Sender]s are dropped.
pub fn recv_batch(&self, element_limit: usize) -> impl Future<Output = Vec<T>> + '_ {
RecvBatch {
receiver: self,
element_limit,
}
}
/// Wait for up to `element_limit` values from the channel and
/// store them in `vec`.
///
/// `vec` should be empty when passed in. Nevertheless, `recv_vec`
/// will clear it before adding values. The intent of `recv_vec`
/// is that batches can be repeatedly read by workers without new
/// allocations.
///
/// It's not required, but `vec`'s capacity should be greater than
/// or equal to element_limit to avoid reallocation.
pub fn recv_vec<'a>(
&'a self,
element_limit: usize,
vec: &'a mut Vec<T>,
) -> impl Future<Output = ()> + 'a {
vec.clear();
RecvVec {
receiver: self,
element_limit,
vec,
}
}
// TODO: try_recv_batch
}
/// Allocates a new, unbounded channel and returns the sender,
/// receiver pair.
pub fn unbounded<T>() -> (Sender<T>, Receiver<T>) {
let state = Arc::new(Mutex::new(State {
queue: VecDeque::new(),
tx_count: 1,
rx_count: 1,
rx_wakers: Vec::new(),
}));
(
Sender {
state: state.clone(),
},
Receiver { state },
)
}