1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
use super::*;

/// 2 dimensional vector.
#[repr(C)]
#[derive(Debug, Copy, Clone, Hash, Eq, PartialEq, Serialize, Deserialize)]
pub struct Vec2<T> {
    /// `x` coordinate of the vector
    pub x: T,
    /// `y` coordinate of the vector
    pub y: T,
}

impl<T: Display> Display for Vec2<T> {
    fn fmt(&self, fmt: &mut std::fmt::Formatter) -> fmt::Result {
        write!(fmt, "({}, {})", self.x, self.y)
    }
}

/// Construct a 2-d vector with given components.
///
/// # Example
/// ```
/// use batbox::*;
/// let v = vec2(1, 2);
/// ```
pub const fn vec2<T>(x: T, y: T) -> Vec2<T> {
    Vec2 { x, y }
}

impl<T> From<[T; 2]> for Vec2<T> {
    fn from(v: [T; 2]) -> Vec2<T> {
        let [x, y] = v;
        vec2(x, y)
    }
}

impl<T> Deref for Vec2<T> {
    type Target = [T; 2];
    fn deref(&self) -> &[T; 2] {
        unsafe { mem::transmute(self) }
    }
}

impl<T> DerefMut for Vec2<T> {
    fn deref_mut(&mut self) -> &mut [T; 2] {
        unsafe { mem::transmute(self) }
    }
}

impl<T> Vec2<T> {
    /// Extend into a 3-d vector.
    ///
    /// # Examples
    /// ```
    /// use batbox::*;
    /// assert_eq!(vec2(1, 2).extend(3), vec3(1, 2, 3));
    /// ```
    pub fn extend(self, z: T) -> Vec3<T> {
        vec3(self.x, self.y, z)
    }

    pub fn map<U, F: Fn(T) -> U>(self, f: F) -> Vec2<U> {
        vec2(f(self.x), f(self.y))
    }
}

impl<T: UNum> Vec2<T> {
    /// A zero 2-d vector
    pub const ZERO: Self = vec2(T::ZERO, T::ZERO);
}

impl<T: Num + Copy> Vec2<T> {
    /// Calculate dot product of two vectors.
    ///
    /// # Examples
    /// ```
    /// use batbox::*;
    /// assert_eq!(Vec2::dot(vec2(1, 2), vec2(3, 4)), 11);
    /// ```
    pub fn dot(a: Self, b: Self) -> T {
        a.x * b.x + a.y * b.y
    }

    /// Calculate skew product of two vectors.
    ///
    /// # Examples
    /// ```
    /// use batbox::*;
    /// assert_eq!(Vec2::skew(vec2(1, 2), vec2(3, 4)), -2);
    /// ```
    pub fn skew(a: Self, b: Self) -> T {
        a.x * b.y - a.y * b.x
    }
}

impl<T: Neg<Output = T>> Vec2<T> {
    /// Rotate a vector by 90 degrees counter clockwise.
    /// # Examples
    /// ```
    /// use batbox::*;
    /// let v = vec2(3.0, 4.0);
    /// assert_eq!(v.rotate_90(), vec2(-4.0, 3.0));
    /// ```
    pub fn rotate_90(self) -> Self {
        vec2(-self.y, self.x)
    }
}

impl<T: Float> Vec2<T> {
    /// Normalize a vector.
    ///
    /// # Examples
    /// ```
    /// use batbox::*;
    /// let v: Vec2<f64> = vec2(1.0, 2.0);
    /// assert!((v.normalize().len() - 1.0).abs() < 1e-5);
    /// ```
    pub fn normalize(self) -> Self {
        self / self.len()
    }

    /// Calculate length of a vector.
    /// # Examples
    /// ```
    /// use batbox::*;
    /// let v = vec2(3.0, 4.0);
    /// assert_eq!(v.len(), 5.0);
    /// ```
    pub fn len(self) -> T {
        T::sqrt(self.x * self.x + self.y * self.y)
    }

    /// Rotate a vector by a given angle.
    /// # Examples
    /// ```
    /// use batbox::*;
    /// let v = vec2(1.0, 2.0);
    /// assert!((v.rotate(std::f32::consts::FRAC_PI_2) - vec2(-2.0, 1.0)).len() < 1e-5);
    /// ```
    pub fn rotate(self, angle: T) -> Self {
        let (sin, cos) = T::sin_cos(angle);
        Self {
            x: self.x * cos - self.y * sin,
            y: self.x * sin + self.y * cos,
        }
    }

    /// Clamp vector's length from above.
    /// # Examples
    /// ```
    /// use batbox::*;
    /// let v = vec2(1.0, 2.0);
    /// assert_eq!(v.clamp(1.0), v.normalize());
    /// ```
    pub fn clamp(self, max_len: T) -> Self {
        let len = self.len();
        if len > max_len {
            self * max_len / len
        } else {
            self
        }
    }

    /// Get an angle between the positive direction of the x-axis.
    /// # Examples
    /// ```
    /// use batbox::*;
    /// let v = vec2(0.0, 1.0);
    /// assert_eq!(v.arg(), std::f32::consts::FRAC_PI_2);
    /// ```
    pub fn arg(self) -> T {
        T::atan2(self.y, self.x)
    }
}