1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
use super::*;
/// 2 dimensional vector.
#[repr(C)]
#[derive(Debug, Copy, Clone, Hash, Eq, PartialEq, Serialize, Deserialize)]
pub struct Vec2<T> {
/// `x` coordinate of the vector
pub x: T,
/// `y` coordinate of the vector
pub y: T,
}
impl<T: Display> Display for Vec2<T> {
fn fmt(&self, fmt: &mut std::fmt::Formatter) -> fmt::Result {
write!(fmt, "({}, {})", self.x, self.y)
}
}
/// Construct a 2-d vector with given components.
///
/// # Example
/// ```
/// use batbox::*;
/// let v = vec2(1, 2);
/// ```
pub const fn vec2<T>(x: T, y: T) -> Vec2<T> {
Vec2 { x, y }
}
impl<T> From<[T; 2]> for Vec2<T> {
fn from(v: [T; 2]) -> Vec2<T> {
let [x, y] = v;
vec2(x, y)
}
}
impl<T> Deref for Vec2<T> {
type Target = [T; 2];
fn deref(&self) -> &[T; 2] {
unsafe { mem::transmute(self) }
}
}
impl<T> DerefMut for Vec2<T> {
fn deref_mut(&mut self) -> &mut [T; 2] {
unsafe { mem::transmute(self) }
}
}
impl<T> Vec2<T> {
/// Extend into a 3-d vector.
///
/// # Examples
/// ```
/// use batbox::*;
/// assert_eq!(vec2(1, 2).extend(3), vec3(1, 2, 3));
/// ```
pub fn extend(self, z: T) -> Vec3<T> {
vec3(self.x, self.y, z)
}
pub fn map<U, F: Fn(T) -> U>(self, f: F) -> Vec2<U> {
vec2(f(self.x), f(self.y))
}
}
impl<T: UNum> Vec2<T> {
/// A zero 2-d vector
pub const ZERO: Self = vec2(T::ZERO, T::ZERO);
}
impl<T: Num + Copy> Vec2<T> {
/// Calculate dot product of two vectors.
///
/// # Examples
/// ```
/// use batbox::*;
/// assert_eq!(Vec2::dot(vec2(1, 2), vec2(3, 4)), 11);
/// ```
pub fn dot(a: Self, b: Self) -> T {
a.x * b.x + a.y * b.y
}
/// Calculate skew product of two vectors.
///
/// # Examples
/// ```
/// use batbox::*;
/// assert_eq!(Vec2::skew(vec2(1, 2), vec2(3, 4)), -2);
/// ```
pub fn skew(a: Self, b: Self) -> T {
a.x * b.y - a.y * b.x
}
}
impl<T: Neg<Output = T>> Vec2<T> {
/// Rotate a vector by 90 degrees counter clockwise.
/// # Examples
/// ```
/// use batbox::*;
/// let v = vec2(3.0, 4.0);
/// assert_eq!(v.rotate_90(), vec2(-4.0, 3.0));
/// ```
pub fn rotate_90(self) -> Self {
vec2(-self.y, self.x)
}
}
impl<T: Float> Vec2<T> {
/// Normalize a vector.
///
/// # Examples
/// ```
/// use batbox::*;
/// let v: Vec2<f64> = vec2(1.0, 2.0);
/// assert!((v.normalize().len() - 1.0).abs() < 1e-5);
/// ```
pub fn normalize(self) -> Self {
self / self.len()
}
/// Calculate length of a vector.
/// # Examples
/// ```
/// use batbox::*;
/// let v = vec2(3.0, 4.0);
/// assert_eq!(v.len(), 5.0);
/// ```
pub fn len(self) -> T {
T::sqrt(self.x * self.x + self.y * self.y)
}
/// Rotate a vector by a given angle.
/// # Examples
/// ```
/// use batbox::*;
/// let v = vec2(1.0, 2.0);
/// assert!((v.rotate(std::f32::consts::FRAC_PI_2) - vec2(-2.0, 1.0)).len() < 1e-5);
/// ```
pub fn rotate(self, angle: T) -> Self {
let (sin, cos) = T::sin_cos(angle);
Self {
x: self.x * cos - self.y * sin,
y: self.x * sin + self.y * cos,
}
}
/// Clamp vector's length from above.
/// # Examples
/// ```
/// use batbox::*;
/// let v = vec2(1.0, 2.0);
/// assert_eq!(v.clamp(1.0), v.normalize());
/// ```
pub fn clamp(self, max_len: T) -> Self {
let len = self.len();
if len > max_len {
self * max_len / len
} else {
self
}
}
/// Get an angle between the positive direction of the x-axis.
/// # Examples
/// ```
/// use batbox::*;
/// let v = vec2(0.0, 1.0);
/// assert_eq!(v.arg(), std::f32::consts::FRAC_PI_2);
/// ```
pub fn arg(self) -> T {
T::atan2(self.y, self.x)
}
}