Trait basic_dsp_vector::InterpolationOps
[−]
[src]
pub trait InterpolationOps<S, T> where
S: ToSliceMut<T>,
T: RealNumber, { fn interpolatef<B>(
&mut self,
buffer: &mut B,
function: &RealImpulseResponse<T>,
interpolation_factor: T,
delay: T,
conv_len: usize
)
where
B: for<'a> Buffer<'a, S, T>; fn interpolatei<B>(
&mut self,
buffer: &mut B,
function: &RealFrequencyResponse<T>,
interpolation_factor: u32
) -> VoidResult
where
B: for<'a> Buffer<'a, S, T>; fn interpolate<B>(
&mut self,
buffer: &mut B,
function: Option<&RealFrequencyResponse<T>>,
target_points: usize,
delay: T
) -> VoidResult
where
B: for<'a> Buffer<'a, S, T>; fn interpft<B>(&mut self, buffer: &mut B, target_points: usize)
where
B: for<'a> Buffer<'a, S, T>; fn decimatei(&mut self, decimation_factor: u32, delay: u32); }
Provides interpolation operations for real and complex data vectors.
Unstable
This functionality has been recently added in order to find out if the definitions are consistent. However the actual implementation is lacking tests.
Required Methods
fn interpolatef<B>(
&mut self,
buffer: &mut B,
function: &RealImpulseResponse<T>,
interpolation_factor: T,
delay: T,
conv_len: usize
) where
B: for<'a> Buffer<'a, S, T>,
&mut self,
buffer: &mut B,
function: &RealImpulseResponse<T>,
interpolation_factor: T,
delay: T,
conv_len: usize
) where
B: for<'a> Buffer<'a, S, T>,
Interpolates self with the convolution function function by the real value
interpolation_factor. InterpolationOps is done in time domain and the argument
conv_len can be used to balance accuracy and computational performance.
A delay can be used to delay or phase shift the vector.
The delay considers self.delta().
The complexity of this interpolatef is O(self.points() * conv_len),
while for interpolatei it's O(self.points() * log(self.points())). If computational
performance is important you should therefore decide how large conv_len needs to be
to yield the desired accuracy. If you compare conv_len to log(self.points) you should
get a feeling for the expected performance difference. More important is however to do a
test run to compare the speed of interpolatef and interpolatei.
Together with the information that changing the vectors size change log(self.points()
but not conv_len gives the indication that interpolatef performs faster for larger
vectors while interpolatei performs faster for smaller vectors.
fn interpolatei<B>(
&mut self,
buffer: &mut B,
function: &RealFrequencyResponse<T>,
interpolation_factor: u32
) -> VoidResult where
B: for<'a> Buffer<'a, S, T>,
&mut self,
buffer: &mut B,
function: &RealFrequencyResponse<T>,
interpolation_factor: u32
) -> VoidResult where
B: for<'a> Buffer<'a, S, T>,
Interpolates self with the convolution function function by the interger value
interpolation_factor. InterpolationOps is done in in frequency domain.
See the description of interpolatef for some basic performance considerations.
Failures
TransRes may report the following ErrorReason members:
ArgumentFunctionMustBeSymmetric: if!self.is_complex() && !function.is_symmetric()or in words ifselfis a real vector andfunctionis asymmetric. Converting the vector into a complex vector before the interpolation is one way to resolve this error.
fn interpolate<B>(
&mut self,
buffer: &mut B,
function: Option<&RealFrequencyResponse<T>>,
target_points: usize,
delay: T
) -> VoidResult where
B: for<'a> Buffer<'a, S, T>,
&mut self,
buffer: &mut B,
function: Option<&RealFrequencyResponse<T>>,
target_points: usize,
delay: T
) -> VoidResult where
B: for<'a> Buffer<'a, S, T>,
Interpolates the signal in frequency domain by padding it with zeros.
fn interpft<B>(&mut self, buffer: &mut B, target_points: usize) where
B: for<'a> Buffer<'a, S, T>,
B: for<'a> Buffer<'a, S, T>,
Interpolates the signal in frequency domain by padding it with zeros. This function preserves the shape of the signal in frequency domain.
Calling this function is the same as calling interpolate with None as
function and 0.0 as delay.
fn decimatei(&mut self, decimation_factor: u32, delay: u32)
Decimates or downsamples self. decimatei is the inverse function to interpolatei.
Implementors
impl<S, T, N, D> InterpolationOps<S, T> for DspVec<S, T, N, D> where
DspVec<S, T, N, D>: InsertZerosOpsBuffered<S, T> + ScaleOps<T> + ResizeBufferedOps<S, T>,
S: ToSliceMut<T> + ToComplexVector<S, T> + ToDspVector<T>,
T: RealNumber,
N: NumberSpace,
D: Domain,