1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
//! This crate provides utilities to implement loadable builtins for bash. It
//! reuses functions provided by bash as much as possible in order to keep
//! compatibility with existing builtins.
//!
//! # What are Loadable Builtins
//!
//! Bash, like most shells, has [*builtins*]. A builtin looks like a regular
//! command, but it is executed in the shell process. Some builtins are used to
//! interact with the shell (like `cd` or `jobs`), and others are common
//! utilities (like `printf` or `test`).
//!
//! New builtins can be created in a running shell as [*loadable builtins*],
//! using code from a dynamic library (for example, a `.so` file in Linux). This
//! is done with the [`enable -f`] command.
//!
//! For example, if the crate name is `foo`, and it defines a `bar` builtin,
//! the following commands will load it:
//!
//! ```notrust
//! $ cargo build --release
//!
//! $ enable -f target/release/libfoo.so bar
//! ```
//!
//! [*loadable builtins*]: https://git.savannah.gnu.org/cgit/bash.git/tree/examples/loadables/README?h=bash-5.1
//! [*builtins*]: https://www.gnu.org/software/bash/manual/html_node/Shell-Builtin-Commands.html
//! [`enable -f`]: https://www.gnu.org/software/bash/manual/html_node/Bash-Builtins.html#index-enable
//!
//! # Usage
//!
//! ## Crate Configuration
//!
//! The crate where the builtin is implemented has to include `cdylib` in its
//! [`crate-type` field]. This is required to build a dynamic library.
//!
//! `Cargo.toml` should contain something similar to this:
//!
//! ```notrust
//! [dependencies]
#![doc = concat!(
    env!("CARGO_PKG_NAME"),
    " = \"",
    env!("CARGO_PKG_VERSION"), "\"")
]
//!
//! [lib]
//! crate-type = [ "cdylib" ]
//! ```
//!
//! [`crate-type` field]: https://doc.rust-lang.org/cargo/reference/cargo-targets.html#the-crate-type-field
//!
//! ## Main Items
//!
//! These are the main items to implement a builtin:
//!
//! * The [`builtin_metadata!()`] macro, to generate functions and declarations
//!   required by bash.
//!
//! * The [`BuiltinOptions`] derive macro, to generate an option parser.
//!
//! * The [`Builtin`] trait, to provide the builtin functionality.
//!
//! * The [`Args`] type, to access to the command-line arguments.
//!
//! A single crate can contain multiple builtins. Each builtin requires its own
//! call to [`builtin_metadata!()`].
//!
//! ## Basic Structure
//!
//! ```
//! use bash_builtins::{builtin_metadata, Args, Builtin, BuiltinOptions, Result};
//!
//! builtin_metadata!(
//! #   name = "SomeName", create = SomeName::default,
//!     // Builtin metadata.
//! );
//!
//! # #[derive(Default)]
//! struct SomeName {
//!     // Fields to store state.
//! }
//!
//! #[derive(BuiltinOptions)]
//! enum Opt {
//!     // Options from the command-line arguments.
//! }
//!
//! impl Builtin for SomeName {
//!     fn call(&mut self, args: &mut Args) -> Result<()> {
//!         // builtin implementation
//!         Ok(())
//!     }
//! }
//! ```
//!
//! # Example
//!
//! The following example is a simple counter.
//!
//! It accepts some options to modify the stored value.
//!
#![doc = concat!("```\n", include_str!("../examples/counter.rs"), "```")]
//!
//! This example is available in the `examples/counter.rs` file of the Git
//! repository of this crate.
//!
//! It can be tested with the following commands:
//!
//! ```notrust
//! $ cargo build --release --examples
//!
//! $ enable -f target/release/examples/libcounter.so counter
//!
//! $ counter
//! 0
//!
//! $ counter
//! 1
//!
//! $ help counter
//! counter: counter [-r] [-s value] [-a value]
//!     Print a value, and increment it.
//!
//!     Options:
//!       -r        Reset the value to 0.
//!       -s        Set the counter to a specific value.
//!       -a        Increment the counter by a value.
//!
//! $ counter -s -100
//!
//! $ counter
//! -100
//!
//! $ counter abcd
//! bash: counter: too many arguments
//!
//! $ enable -d counter
//!
//! $ counter
//! bash: counter: command not found
//! ```
//!
//! # Builtin Documentation
//!
//! A bash builtin has two fields for the documentation:
//!
//! * [`short_doc`]: a single line of text to describe how to use the builtin.
//! * [`long_doc`]: a detailed explanation of the builtin.
//!
//! [`short_doc`]: bash_builtins_macro::builtin_metadata!()#short_doc-optional
//! [`long_doc`]: bash_builtins_macro::builtin_metadata!()#long_doc-optional
//!
//! Both fields are optional, but it is recommend to include them.
//!
//! See the documentation of the [`builtin_metadata!()`] macro for more details.
//!
//! # Builtin Initialization
//!
//! When the builtin is loaded, the function given in either [`create`] or
//! [`try_create`] is executed. This function will create a new instance of a
//! type that implements the [`Builtin`] trait.
//!
//! [`try_create`] is used if the initialization mail fails.
//!
//! ## Example of a Fallible Initialization
//!
//! ```
//! # use bash_builtins::*;
//! use std::fs::File;
//!
//! builtin_metadata!(
//! #   name = "x",
//!     // …
//!     try_create = Foo::new,
//! );
//!
//! struct Foo {
//!     file: File
//! }
//!
//! impl Foo {
//!     fn new() -> Result<Foo> {
//!         let file = File::open("/some/config/file")?;
//!         Ok(Foo { file })
//!     }
//! }
//!
//! impl Builtin for Foo {
//!     fn call(&mut self, args: &mut Args) -> Result<()> {
//! #       let _ = args;
//!         // …
//!         Ok(())
//!     }
//! }
//! ```
//!
//! [`create`]: bash_builtins_macro::builtin_metadata!()#create
//! [`try_create`]: bash_builtins_macro::builtin_metadata!()#try_create
//!
//! # Builtin Removal
//!
//! A loadable builtin can be removed from a running shell with `enable -d`.
//!
//! If a builtin needs to run any cleanup process when it is unloaded, then it
//! must implement [`Drop`](std::ops::Drop). The value is dropped just before
//! the builtin is deleted.
//!
//! # Parsing Command Line Options
//!
//! Bash builtins use an internal implementation of `getopt()` to parse command
//! line arguments. The [`BuiltinOptions`] derive macro provides an easy-to-use
//! method to generate an options parser on top of this `getopt()`.
//!
//! See the macro documentation for details on how to use it.
//!
//! # Error Handling
//!
//! The macros [`error!()`] and [`warning!()`] can be used to produce log
//! messages to the standard error stream (*stderr*). They use the bash
//! functions `builtin_error` and `builtin_warning`.
//!
//! [Recoverable errors] can be used as the return value of [`Builtin::call`],
//! usually with the [`?` operator]. In such cases, the message from the error
//! is printed to *stderr*, and the exit code of the builtin is `1`.
//!
//! [Recoverable Errors]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html
//! [`?` operator]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#a-shortcut-for-propagating-errors-the--operator
//! Use [`Error::ExitCode`] to return a specific exit code. See the [`Error`]
//! documentation for more details.
//!
//! # Using Shell Variables
//!
//! The module [`variables`] contains functions to manage the shell variables.
//!
//! ## Example
//!
//! The following example uses the variable `$SOMENAME_LIMIT` to set the
//! configuration value for the builtin. If it is not present, or its value is
//! not a valid `usize`, it uses a default value
//!
//! ```
//! use bash_builtins::variables;
//!
//! const DEFAULT_LIMIT: usize = 1024;
//!
//! const LIMIT_VAR_NAME: &str = "SOMENAME_LIMIT";
//!
//! fn get_limit() -> usize {
//!     variables::find_as_string(LIMIT_VAR_NAME)
//!         .as_ref()
//!         .and_then(|v| v.to_str().ok())
//!         .and_then(|v| v.parse().ok())
//!         .unwrap_or(DEFAULT_LIMIT)
//! }
//! ```
//!
//! # Creating Dynamic Variables
//!
//! Dynamic variables are shell variables that use custom functions each time
//! they are accessed (like `$SECONDS` or `$RANDOM`).
//!
//! Use [`variables::bind`] to create a dynamic variable with any type
//! implementing [`DynamicVariable`](variables::DynamicVariable).
//!
//! # Panic Handling
//!
//! Panics are captured with [`panic::catch_unwind`], so they should not reach
//! the bash process.
//!
//! After a panic the builtin is [“poisoned”], and any attempt to use it will
//! print the error `invalid internal state` on the terminal. Users will have
//! to remove it (`enable -d`) and enable it again. Also, when a poisoned
//! builtin is removed, its destructors (if any) are not executed.
//!
//! If you want to avoid this behaviour you have to use [`panic::catch_unwind`]
//! in your own code.
//!
//! [“poisoned”]: https://doc.rust-lang.org/stable/std/sync/struct.Mutex.html#poisoning
//!
//! It is important to *not* set the [`panic` setting] to `"abort"`. If the
//! dynamic library is built with this setting, a panic will terminate the bash
//! process.
//!
//! [`panic::catch_unwind`]: std::panic::catch_unwind
//! [`panic` setting]: https://doc.rust-lang.org/cargo/reference/profiles.html#panic
//! [`BuiltinOptions`]: bash_builtins_macro::BuiltinOptions

#![cfg_attr(docsrs, feature(doc_cfg))]

mod args;
mod errors;

pub mod convert;
pub mod log;
pub mod variables;

#[doc(hidden)]
pub mod ffi;

// Re-export macros.
pub use bash_builtins_macro::{builtin_metadata, BuiltinOptions};

// Re-export public items.
pub use args::{Args, BuiltinOptions};
pub use errors::{Error, Result};

/// The `Builtin` trait contains the implementation for a bash builtin.
pub trait Builtin {
    /// Method invoked when the builtin is typed in the prompt.
    ///
    /// It returns an instance of [`Result`]. The value `Ok(())` returns the
    /// exit code `0` to the shell. [`Error::ExitCode`] can be used to return a
    /// specific exit code.
    ///
    /// Any error type that implements [`std::error::Error`] can be used with
    /// the `?` operator to return an error from this method.
    ///
    /// Command-line arguments are read from the [`Args`] instance.
    fn call(&mut self, args: &mut Args) -> Result<()>;
}