1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
//! Iterators over BaoTree nodes
//!
//! Range iterators take a reference to the ranges, and therefore require a lifetime parameter.
//! They can be used without lifetime parameters using self referencing structs.
use std::fmt;
use range_collections::{RangeSet2, RangeSetRef};
use self_cell::self_cell;
use smallvec::SmallVec;
use crate::{BaoTree, ChunkNum, TreeNode};
/// Extended node info.
///
/// Some of the information is redundant, but it is convenient to have it all in one place.
#[derive(Debug, PartialEq, Eq)]
pub struct NodeInfo<'a> {
/// the node
pub node: TreeNode,
/// left child intersection with the query range
pub l_ranges: &'a RangeSetRef<ChunkNum>,
/// right child intersection with the query range
pub r_ranges: &'a RangeSetRef<ChunkNum>,
/// the node is fully included in the query range
pub full: bool,
/// the node is a leaf for the purpose of this query
pub query_leaf: bool,
/// the node is the root node (needs special handling when computing hash)
pub is_root: bool,
/// true if this node is the last leaf, and it is <= half full
pub is_half_leaf: bool,
}
/// Iterator over all nodes in a BaoTree in pre-order that overlap with a given chunk range.
///
/// This is mostly used internally
#[derive(Debug)]
pub struct PreOrderPartialIterRef<'a> {
/// the tree we want to traverse
tree: BaoTree,
/// number of valid nodes, needed in node.right_descendant
tree_filled_size: TreeNode,
/// minimum level of *full* nodes to visit
min_level: u8,
/// is root
is_root: bool,
/// stack of nodes to visit
stack: SmallVec<[(TreeNode, &'a RangeSetRef<ChunkNum>); 8]>,
}
impl<'a> PreOrderPartialIterRef<'a> {
/// Create a new iterator over the tree.
pub fn new(tree: BaoTree, range: &'a RangeSetRef<ChunkNum>, min_level: u8) -> Self {
let mut stack = SmallVec::new();
stack.push((tree.root(), range));
Self {
tree,
tree_filled_size: tree.filled_size(),
min_level,
stack,
is_root: tree.start_chunk == 0,
}
}
/// Get a reference to the tree.
pub fn tree(&self) -> &BaoTree {
&self.tree
}
}
impl<'a> Iterator for PreOrderPartialIterRef<'a> {
type Item = NodeInfo<'a>;
fn next(&mut self) -> Option<Self::Item> {
let tree = &self.tree;
loop {
let (node, ranges) = self.stack.pop()?;
if ranges.is_empty() {
continue;
}
// the middle chunk of the node
let mid = node.mid().to_chunks(tree.block_size);
// the start chunk of the node
let start = node.block_range().start.to_chunks(tree.block_size);
// check if the node is fully included
let full = ranges.boundaries().len() == 1 && ranges.boundaries()[0] <= start;
// split the ranges into left and right
let (l_ranges, r_ranges) = ranges.split(mid);
// we can't recurse if the node is a leaf
// we don't want to recurse if the node is full and below the minimum level
let query_leaf = node.is_leaf() || (full && node.level() < self.min_level as u32);
// recursion is just pushing the children onto the stack
if !query_leaf {
let l = node.left_child().unwrap();
let r = node.right_descendant(self.tree_filled_size).unwrap();
// push right first so we pop left first
self.stack.push((r, r_ranges));
self.stack.push((l, l_ranges));
}
let is_root = self.is_root;
self.is_root = false;
let is_half_leaf = !tree.is_persisted(node);
// emit the node in any case
break Some(NodeInfo {
node,
l_ranges,
r_ranges,
full,
query_leaf,
is_root,
is_half_leaf,
});
}
}
}
/// Iterator over all nodes in a BaoTree in post-order.
#[derive(Debug)]
pub struct PostOrderNodeIter {
/// the overall number of nodes in the tree
len: TreeNode,
/// the current node, None if we are done
curr: TreeNode,
/// where we came from, used to determine the next node
prev: Prev,
}
impl PostOrderNodeIter {
/// Create a new iterator over the tree.
pub fn new(tree: BaoTree) -> Self {
Self {
len: tree.filled_size(),
curr: tree.root(),
prev: Prev::Parent,
}
}
fn go_up(&mut self, curr: TreeNode) {
let prev = curr;
(self.curr, self.prev) = if let Some(parent) = curr.restricted_parent(self.len) {
(
parent,
if prev < parent {
Prev::Left
} else {
Prev::Right
},
)
} else {
(curr, Prev::Done)
};
}
}
impl Iterator for PostOrderNodeIter {
type Item = TreeNode;
fn next(&mut self) -> Option<Self::Item> {
loop {
let curr = self.curr;
match self.prev {
Prev::Parent => {
if let Some(child) = curr.left_child() {
// go left first when coming from above, don't emit curr
self.curr = child;
self.prev = Prev::Parent;
} else {
// we are a left or right leaf, go up and emit curr
self.go_up(curr);
break Some(curr);
}
}
Prev::Left => {
// no need to check is_leaf, since we come from a left child
// go right when coming from left, don't emit curr
self.curr = curr.right_descendant(self.len).unwrap();
self.prev = Prev::Parent;
}
Prev::Right => {
// go up in any case, do emit curr
self.go_up(curr);
break Some(curr);
}
Prev::Done => {
break None;
}
}
}
}
}
/// Iterator over all nodes in a BaoTree in pre-order.
#[derive(Debug)]
pub struct PreOrderNodeIter {
/// the overall number of nodes in the tree
len: TreeNode,
/// the current node, None if we are done
curr: TreeNode,
/// where we came from, used to determine the next node
prev: Prev,
}
impl PreOrderNodeIter {
/// Create a new iterator over the tree.
pub fn new(tree: BaoTree) -> Self {
Self {
len: tree.filled_size(),
curr: tree.root(),
prev: Prev::Parent,
}
}
fn go_up(&mut self, curr: TreeNode) {
let prev = curr;
(self.curr, self.prev) = if let Some(parent) = curr.restricted_parent(self.len) {
(
parent,
if prev < parent {
Prev::Left
} else {
Prev::Right
},
)
} else {
(curr, Prev::Done)
};
}
}
impl Iterator for PreOrderNodeIter {
type Item = TreeNode;
fn next(&mut self) -> Option<Self::Item> {
loop {
let curr = self.curr;
match self.prev {
Prev::Parent => {
if let Some(child) = curr.left_child() {
// go left first when coming from above
self.curr = child;
self.prev = Prev::Parent;
} else {
// we are a left or right leaf, go up
self.go_up(curr);
}
// emit curr before children (pre-order)
break Some(curr);
}
Prev::Left => {
// no need to check is_leaf, since we come from a left child
// go right when coming from left, don't emit curr
self.curr = curr.right_descendant(self.len).unwrap();
self.prev = Prev::Parent;
}
Prev::Right => {
// go up in any case
self.go_up(curr);
}
Prev::Done => {
break None;
}
}
}
}
}
#[derive(Debug)]
enum Prev {
Parent,
Left,
Right,
Done,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
/// A chunk describeds what to read or write next
pub enum BaoChunk {
/// expect a 64 byte parent node.
///
/// To validate, use parent_cv using the is_root value
Parent {
/// This is the root, to be passed to parent_cv
is_root: bool,
/// Push the right hash to the stack, since it will be needed later
right: bool,
/// Push the left hash to the stack, since it will be needed later
left: bool,
/// The tree node, useful for error reporting
node: TreeNode,
},
/// expect data of size `size`
///
/// To validate, use hash_block using the is_root and start_chunk values
Leaf {
/// Size of the data to expect. Will be chunk_group_bytes for all but the last block.
size: usize,
/// This is the root, to be passed to hash_block
is_root: bool,
/// Start chunk, to be passed to hash_block
start_chunk: ChunkNum,
},
}
/// Iterator over all chunks in a BaoTree in post-order.
#[derive(Debug)]
pub struct PostOrderChunkIter {
tree: BaoTree,
inner: PostOrderNodeIter,
// stack with 2 elements, since we can only have 2 items in flight
stack: [BaoChunk; 2],
index: usize,
root: TreeNode,
}
impl PostOrderChunkIter {
/// Create a new iterator over the tree.
pub fn new(tree: BaoTree) -> Self {
Self {
tree,
inner: PostOrderNodeIter::new(tree),
stack: Default::default(),
index: 0,
root: tree.root(),
}
}
fn push(&mut self, item: BaoChunk) {
self.stack[self.index] = item;
self.index += 1;
}
fn pop(&mut self) -> Option<BaoChunk> {
if self.index > 0 {
self.index -= 1;
Some(self.stack[self.index])
} else {
None
}
}
}
impl Iterator for PostOrderChunkIter {
type Item = BaoChunk;
fn next(&mut self) -> Option<Self::Item> {
loop {
if let Some(item) = self.pop() {
return Some(item);
}
let node = self.inner.next()?;
let is_root = node == self.root;
if self.tree.is_persisted(node) {
self.push(BaoChunk::Parent {
node,
is_root,
left: true,
right: true,
});
}
if let Some(leaf) = node.as_leaf() {
let tree = &self.tree;
let (s, m, e) = tree.leaf_byte_ranges3(leaf);
let l_start_chunk = tree.chunk_num(leaf);
let r_start_chunk = l_start_chunk + tree.chunk_group_chunks();
let is_half_leaf = m == e;
if !is_half_leaf {
self.push(BaoChunk::Leaf {
is_root: false,
start_chunk: r_start_chunk,
size: (e - m).to_usize(),
});
};
break Some(BaoChunk::Leaf {
is_root: is_root && is_half_leaf,
start_chunk: l_start_chunk,
size: (m - s).to_usize(),
});
}
}
}
}
impl BaoChunk {
/// Return the size of the chunk in bytes.
pub fn size(&self) -> usize {
match self {
Self::Parent { .. } => 64,
Self::Leaf { size, .. } => *size,
}
}
}
impl Default for BaoChunk {
fn default() -> Self {
Self::Leaf {
is_root: true,
size: 0,
start_chunk: ChunkNum(0),
}
}
}
/// An iterator that produces chunks in pre order, but only for the parts of the
/// tree that are relevant for a query.
#[derive(Debug)]
pub struct PreOrderChunkIterRef<'a> {
inner: PreOrderPartialIterRef<'a>,
// stack with 2 elements, since we can only have 2 items in flight
stack: [BaoChunk; 2],
index: usize,
}
impl<'a> PreOrderChunkIterRef<'a> {
/// Create a new iterator over the tree.
pub fn new(tree: BaoTree, query: &'a RangeSetRef<ChunkNum>, min_level: u8) -> Self {
Self {
inner: tree.ranges_pre_order_nodes_iter(query, min_level),
stack: Default::default(),
index: 0,
}
}
/// Return a reference to the underlying tree.
pub fn tree(&self) -> &BaoTree {
self.inner.tree()
}
fn push(&mut self, item: BaoChunk) {
self.stack[self.index] = item;
self.index += 1;
}
fn pop(&mut self) -> Option<BaoChunk> {
if self.index > 0 {
self.index -= 1;
Some(self.stack[self.index])
} else {
None
}
}
}
impl<'a> Iterator for PreOrderChunkIterRef<'a> {
type Item = BaoChunk;
fn next(&mut self) -> Option<Self::Item> {
loop {
if let Some(item) = self.pop() {
return Some(item);
}
let NodeInfo {
node,
is_root,
is_half_leaf,
l_ranges,
r_ranges,
..
} = self.inner.next()?;
if let Some(leaf) = node.as_leaf() {
let tree = &self.inner.tree;
let (s, m, e) = tree.leaf_byte_ranges3(leaf);
let l_start_chunk = tree.chunk_num(leaf);
let r_start_chunk = l_start_chunk + tree.chunk_group_chunks();
if !r_ranges.is_empty() && !is_half_leaf {
self.push(BaoChunk::Leaf {
is_root: false,
start_chunk: r_start_chunk,
size: (e - m).to_usize(),
});
};
if !l_ranges.is_empty() {
self.push(BaoChunk::Leaf {
is_root: is_root && is_half_leaf,
start_chunk: l_start_chunk,
size: (m - s).to_usize(),
});
};
}
// the last leaf is a special case, since it does not have a parent if it is <= half full
if !is_half_leaf {
break Some(BaoChunk::Parent {
is_root,
left: !l_ranges.is_empty(),
right: !r_ranges.is_empty(),
node,
});
}
}
}
}
self_cell! {
pub(crate) struct PreOrderChunkIterInner {
owner: range_collections::RangeSet2<ChunkNum>,
#[not_covariant]
dependent: PreOrderChunkIterRef,
}
}
/// An iterator that produces chunks in pre order
pub struct PreOrderChunkIter(PreOrderChunkIterInner);
impl fmt::Debug for PreOrderChunkIter {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("PreOrderChunkIter").finish()
}
}
impl PreOrderChunkIter {
/// Create a new iterator over the tree.
pub fn new(tree: BaoTree, ranges: RangeSet2<ChunkNum>) -> Self {
Self(PreOrderChunkIterInner::new(ranges, |ranges| {
PreOrderChunkIterRef::new(tree, ranges, 0)
}))
}
/// The tree this iterator is iterating over.
pub fn tree(&self) -> &BaoTree {
self.0.with_dependent(|_, iter| iter.tree())
}
}
impl Iterator for PreOrderChunkIter {
type Item = BaoChunk;
fn next(&mut self) -> Option<Self::Item> {
self.0.with_dependent_mut(|_, iter| iter.next())
}
}