1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
//! Async (tokio) io, written in fsm style
//!
//! IO ops are written as async state machines that thread the state through the
//! futures to avoid being encumbered by lifetimes.
//!
//! This makes them occasionally a bit verbose to use, but allows being generic
//! without having to box the futures.
use std::{io, result};

use blake3::guts::parent_cv;
use bytes::BytesMut;
use iroh_io::AsyncSliceReader;
use range_collections::{RangeSet2, RangeSetRef};
use smallvec::SmallVec;
use tokio::io::{AsyncRead, AsyncReadExt, AsyncWrite, AsyncWriteExt};

use crate::{
    hash_block,
    iter::{BaoChunk, PreOrderChunkIter},
    outboard::Outboard,
    range_ok, BaoTree, BlockSize, ByteNum, ChunkNum,
};

use super::{
    error::{DecodeError, EncodeError},
    DecodeResponseItem, Leaf, Parent,
};

/// Response decoder state machine, at the start of a stream
#[derive(Debug)]
pub struct ResponseDecoderStart<R> {
    ranges: RangeSet2<ChunkNum>,
    block_size: BlockSize,
    hash: blake3::Hash,
    encoded: R,
}

impl<'a, R: AsyncRead + Unpin> ResponseDecoderStart<R> {
    /// Create a new response decoder state machine, at the start of a stream
    /// where you don't yet know the size.
    pub fn new(
        hash: blake3::Hash,
        ranges: RangeSet2<ChunkNum>,
        block_size: BlockSize,
        encoded: R,
    ) -> Self {
        Self {
            ranges,
            block_size,
            hash,
            encoded,
        }
    }

    /// Immediately finish decoding the stream, returning the underlying reader
    pub fn finish(self) -> R {
        self.encoded
    }

    /// Read the size and go into the next state
    ///
    /// The only thing that can go wrong here is an io error when reading the size.
    pub async fn next(self) -> std::result::Result<(ResponseDecoderReading<R>, u64), io::Error> {
        let Self {
            ranges,
            block_size,
            hash,
            mut encoded,
        } = self;
        let size = encoded.read_u64_le().await?;
        let tree = BaoTree::new(ByteNum(size), block_size);
        let state = ResponseDecoderReading(Box::new(ResponseDecoderReadingInner::new(
            tree, hash, ranges, encoded,
        )));
        Ok((state, size))
    }
}

#[derive(Debug)]
struct ResponseDecoderReadingInner<R> {
    iter: PreOrderChunkIter,
    stack: SmallVec<[blake3::Hash; 10]>,
    encoded: R,
    buf: BytesMut,
}

impl<R> ResponseDecoderReadingInner<R> {
    fn new(tree: BaoTree, hash: blake3::Hash, ranges: RangeSet2<ChunkNum>, encoded: R) -> Self {
        let mut res = Self {
            iter: PreOrderChunkIter::new(tree, ranges),
            stack: SmallVec::new(),
            encoded,
            buf: BytesMut::with_capacity(tree.chunk_group_bytes().to_usize()),
        };
        res.stack.push(hash);
        res
    }
}

/// Response decoder state machine, after reading the size
#[derive(Debug)]
pub struct ResponseDecoderReading<R>(Box<ResponseDecoderReadingInner<R>>);

/// Next type for ResponseDecoderReading.
#[derive(Debug)]
pub enum ResponseDecoderReadingNext<M, D> {
    /// More data is available
    More(M),
    /// The stream is done
    Done(D),
}

impl<R: AsyncRead + Unpin> ResponseDecoderReading<R> {
    /// Create a new response decoder state machine, when you have already read the size.
    ///
    /// The size as well as the chunk size is given in the `tree` parameter.
    pub fn new(hash: blake3::Hash, ranges: RangeSet2<ChunkNum>, tree: BaoTree, encoded: R) -> Self {
        let mut stack = SmallVec::new();
        stack.push(hash);
        Self(Box::new(ResponseDecoderReadingInner {
            iter: PreOrderChunkIter::new(tree, ranges),
            stack,
            encoded,
            buf: BytesMut::new(),
        }))
    }

    pub async fn next(
        mut self,
    ) -> ResponseDecoderReadingNext<(Self, std::result::Result<DecodeResponseItem, DecodeError>), R>
    {
        if let Some(chunk) = self.0.iter.next() {
            let item = self.next0(chunk).await;
            ResponseDecoderReadingNext::More((self, item))
        } else {
            ResponseDecoderReadingNext::Done(self.0.encoded)
        }
    }

    pub fn finish(self) -> R {
        self.0.encoded
    }

    async fn next0(
        &mut self,
        chunk: BaoChunk,
    ) -> std::result::Result<DecodeResponseItem, DecodeError> {
        Ok(match chunk {
            BaoChunk::Parent {
                is_root,
                right,
                left,
                node,
            } => {
                let mut buf = [0u8; 64];
                let this = &mut self.0;
                this.encoded.read_exact(&mut buf).await?;
                let pair @ (l_hash, r_hash) = read_parent(&buf);
                let parent_hash = this.stack.pop().unwrap();
                let actual = parent_cv(&l_hash, &r_hash, is_root);
                // Push the children in reverse order so they are popped in the correct order
                // only push right if the range intersects with the right child
                if right {
                    this.stack.push(r_hash);
                }
                // only push left if the range intersects with the left child
                if left {
                    this.stack.push(l_hash);
                }
                // Validate after pushing the children so that we could in principle continue
                if parent_hash != actual {
                    return Err(DecodeError::ParentHashMismatch(node));
                }
                Parent { pair, node }.into()
            }
            BaoChunk::Leaf {
                size,
                is_root,
                start_chunk,
            } => {
                // this will resize always to chunk group size, except for the last chunk
                let this = &mut self.0;
                this.buf.resize(size, 0u8);
                this.encoded.read_exact(&mut this.buf).await?;
                let leaf_hash = this.stack.pop().unwrap();
                let actual = hash_block(start_chunk, &this.buf, is_root);
                if leaf_hash != actual {
                    return Err(DecodeError::LeafHashMismatch(start_chunk));
                }
                Leaf {
                    offset: start_chunk.to_bytes(),
                    data: self.0.buf.split().freeze(),
                }
                .into()
            }
        })
    }
}

/// Encode ranges relevant to a query from a reader and outboard to a writer
///
/// This will not validate on writing, so data corruption will be detected on reading
pub async fn encode_ranges<D, O, W>(
    data: &mut D,
    outboard: O,
    ranges: &RangeSetRef<ChunkNum>,
    encoded: W,
) -> result::Result<(), EncodeError>
where
    D: AsyncSliceReader,
    O: Outboard,
    W: AsyncWrite + Unpin,
{
    let mut encoded = encoded;
    let file_len = data.len().await?;
    let tree = outboard.tree();
    let ob_len = tree.size;
    if file_len != ob_len {
        return Err(EncodeError::SizeMismatch);
    }
    if !range_ok(ranges, tree.chunks()) {
        return Err(EncodeError::InvalidQueryRange);
    }
    // write header
    encoded
        .write_all(tree.size.0.to_le_bytes().as_slice())
        .await?;
    for item in tree.ranges_pre_order_chunks_iter_ref(ranges, 0) {
        match item {
            BaoChunk::Parent { node, .. } => {
                let (l_hash, r_hash) = outboard.load(node)?.unwrap();
                encoded.write_all(l_hash.as_bytes()).await?;
                encoded.write_all(r_hash.as_bytes()).await?;
            }
            BaoChunk::Leaf {
                start_chunk, size, ..
            } => {
                let start = start_chunk.to_bytes();
                let bytes = data.read_at(start.0, size).await?;
                encoded.write_all(&bytes).await?;
            }
        }
    }
    Ok(())
}

/// Encode ranges relevant to a query from a reader and outboard to a writer
///
/// This function validates the data before writing
pub async fn encode_ranges_validated<D, O, W>(
    data: &mut D,
    outboard: O,
    ranges: &RangeSetRef<ChunkNum>,
    encoded: W,
) -> result::Result<(), EncodeError>
where
    D: AsyncSliceReader,
    O: Outboard,
    W: AsyncWrite + Unpin,
{
    let mut stack = SmallVec::<[blake3::Hash; 10]>::new();
    stack.push(outboard.root());
    let mut encoded = encoded;
    let file_len = ByteNum(data.len().await?);
    let tree = outboard.tree();
    let ob_len = tree.size;
    if file_len != ob_len {
        return Err(EncodeError::SizeMismatch);
    }
    if !range_ok(ranges, tree.chunks()) {
        return Err(EncodeError::InvalidQueryRange);
    }
    // write header
    encoded
        .write_all(tree.size.0.to_le_bytes().as_slice())
        .await?;
    for item in tree.ranges_pre_order_chunks_iter_ref(ranges, 0) {
        match item {
            BaoChunk::Parent {
                is_root,
                left,
                right,
                node,
            } => {
                let (l_hash, r_hash) = outboard.load(node)?.unwrap();
                let actual = parent_cv(&l_hash, &r_hash, is_root);
                let expected = stack.pop().unwrap();
                if actual != expected {
                    return Err(EncodeError::ParentHashMismatch(node));
                }
                if right {
                    stack.push(r_hash);
                }
                if left {
                    stack.push(l_hash);
                }
                encoded.write_all(l_hash.as_bytes()).await?;
                encoded.write_all(r_hash.as_bytes()).await?;
            }
            BaoChunk::Leaf {
                start_chunk,
                size,
                is_root,
            } => {
                let expected = stack.pop().unwrap();
                let start = start_chunk.to_bytes();
                let bytes = data.read_at(start.0, size).await?;
                let actual = hash_block(start_chunk, &bytes, is_root);
                if actual != expected {
                    return Err(EncodeError::LeafHashMismatch(start_chunk));
                }
                encoded.write_all(&bytes).await?;
            }
        }
    }
    Ok(())
}

fn read_parent(buf: &[u8]) -> (blake3::Hash, blake3::Hash) {
    let l_hash = blake3::Hash::from(<[u8; 32]>::try_from(&buf[..32]).unwrap());
    let r_hash = blake3::Hash::from(<[u8; 32]>::try_from(&buf[32..64]).unwrap());
    (l_hash, r_hash)
}