1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
//! Async (tokio) io, written in fsm style
//!
//! IO ops are written as async state machines that thread the state through the
//! futures to avoid being encumbered by lifetimes.
//!
//! This makes them occasionally a bit verbose to use, but allows being generic
//! without having to box the futures.
use std::{io, result};

use crate::{
    blake3, hash_subtree,
    iter::ResponseIter,
    rec::{encode_selected_rec, truncate_ranges, truncate_ranges_owned},
    ChunkRanges, ChunkRangesRef,
};
use blake3::guts::parent_cv;
use bytes::{Bytes, BytesMut};
use futures::{future::LocalBoxFuture, Future, FutureExt};
use iroh_io::AsyncStreamWriter;
use smallvec::SmallVec;
use tokio::io::{AsyncRead, AsyncReadExt};

use crate::{
    io::{
        error::EncodeError,
        outboard::{PostOrderOutboard, PreOrderOutboard},
        Leaf, Parent,
    },
    iter::BaoChunk,
    BaoTree, BlockSize, ByteNum, TreeNode,
};
pub use iroh_io::{AsyncSliceReader, AsyncSliceWriter};

use super::{DecodeError, StartDecodeError};

/// An item of bao content
///
/// We know that we are not going to get headers after the first item.
#[derive(Debug)]
pub enum BaoContentItem {
    /// a parent node, to update the outboard
    Parent(Parent),
    /// a leaf node, to write to the file
    Leaf(Leaf),
}

impl From<Parent> for BaoContentItem {
    fn from(p: Parent) -> Self {
        Self::Parent(p)
    }
}

impl From<Leaf> for BaoContentItem {
    fn from(l: Leaf) -> Self {
        Self::Leaf(l)
    }
}

/// A binary merkle tree for blake3 hashes of a blob.
///
/// This trait contains information about the geometry of the tree, the root hash,
/// and a method to load the hashes at a given node.
///
/// It is up to the implementor to decide how to store the hashes.
///
/// In the original bao crate, the hashes are stored in a file in pre order.
/// This is implemented for a generic io object in [super::outboard::PreOrderOutboard]
/// and for a memory region in [super::outboard::PreOrderMemOutboard].
///
/// For files that grow over time, it is more efficient to store the hashes in post order.
/// This is implemented for a generic io object in [super::outboard::PostOrderOutboard]
/// and for a memory region in [super::outboard::PostOrderMemOutboard].
///
/// If you use a different storage engine, you can implement this trait for it. E.g.
/// you could store the hashes in a database and use the node number as the key.
///
/// The async version takes a mutable reference to load, not because it mutates
/// the outboard (it doesn't), but to ensure that there is at most one outstanding
/// load at a time.
///
/// Dropping the load future without polling it to completion is safe, but will
/// possibly render the outboard unusable.
pub trait Outboard {
    /// The root hash
    fn root(&self) -> blake3::Hash;
    /// The tree. This contains the information about the size of the file and the block size.
    fn tree(&self) -> BaoTree;
    /// load the hash pair for a node
    ///
    /// This takes a &mut self not because it mutates the outboard (it doesn't),
    /// but to ensure that there is only one outstanding load at a time.
    fn load(
        &mut self,
        node: TreeNode,
    ) -> impl Future<Output = io::Result<Option<(blake3::Hash, blake3::Hash)>>>;
}

/// A mutable outboard.
///
/// This trait extends [Outboard] with methods to save a hash pair for a node and to set the
/// length of the data file.
///
/// This trait can be used to incrementally save an outboard when receiving data.
/// If you want to just ignore outboard data, there is a special placeholder outboard
/// implementation [super::outboard::EmptyOutboard].
pub trait OutboardMut: Sized {
    /// Save a hash pair for a node
    fn save(
        &mut self,
        node: TreeNode,
        hash_pair: &(blake3::Hash, blake3::Hash),
    ) -> impl Future<Output = io::Result<()>>;

    /// sync to disk
    fn sync(&mut self) -> impl Future<Output = io::Result<()>>;
}

impl<'b, O: Outboard> Outboard for &'b mut O {
    fn root(&self) -> blake3::Hash {
        (**self).root()
    }

    fn tree(&self) -> BaoTree {
        (**self).tree()
    }

    async fn load(&mut self, node: TreeNode) -> io::Result<Option<(blake3::Hash, blake3::Hash)>> {
        (**self).load(node).await
    }
}

impl<R: AsyncSliceReader> Outboard for PreOrderOutboard<R> {
    fn root(&self) -> blake3::Hash {
        self.root
    }

    fn tree(&self) -> BaoTree {
        self.tree
    }

    async fn load(&mut self, node: TreeNode) -> io::Result<Option<(blake3::Hash, blake3::Hash)>> {
        let Some(offset) = self.tree.pre_order_offset(node) else {
            return Ok(None);
        };
        let offset = offset * 64 + 8;
        let content = self.data.read_at(offset, 64).await?;
        Ok(Some(if content.len() != 64 {
            (blake3::Hash::from([0; 32]), blake3::Hash::from([0; 32]))
        } else {
            parse_hash_pair(content)?
        }))
    }
}

impl<'b, O: OutboardMut> OutboardMut for &'b mut O {
    async fn save(
        &mut self,
        node: TreeNode,
        hash_pair: &(blake3::Hash, blake3::Hash),
    ) -> io::Result<()> {
        (**self).save(node, hash_pair).await
    }

    async fn sync(&mut self) -> io::Result<()> {
        (**self).sync().await
    }
}

impl<W: AsyncSliceWriter> OutboardMut for PreOrderOutboard<W> {
    async fn save(
        &mut self,
        node: TreeNode,
        hash_pair: &(blake3::Hash, blake3::Hash),
    ) -> io::Result<()> {
        let Some(offset) = self.tree.pre_order_offset(node) else {
            return Ok(());
        };
        let offset = offset * 64 + 8;
        let mut buf = [0u8; 64];
        buf[..32].copy_from_slice(hash_pair.0.as_bytes());
        buf[32..].copy_from_slice(hash_pair.1.as_bytes());
        self.data.write_at(offset, &buf).await?;
        Ok(())
    }

    async fn sync(&mut self) -> io::Result<()> {
        self.data.sync().await
    }
}

impl<R: AsyncSliceReader> Outboard for PostOrderOutboard<R> {
    fn root(&self) -> blake3::Hash {
        self.root
    }

    fn tree(&self) -> BaoTree {
        self.tree
    }

    async fn load(&mut self, node: TreeNode) -> io::Result<Option<(blake3::Hash, blake3::Hash)>> {
        let Some(offset) = self.tree.post_order_offset(node) else {
            return Ok(None);
        };
        let offset = offset.value() * 64;
        let content = self.data.read_at(offset, 64).await?;
        Ok(Some(if content.len() != 64 {
            (blake3::Hash::from([0; 32]), blake3::Hash::from([0; 32]))
        } else {
            parse_hash_pair(content)?
        }))
    }
}

pub(crate) fn parse_hash_pair(buf: Bytes) -> io::Result<(blake3::Hash, blake3::Hash)> {
    if buf.len() != 64 {
        return Err(io::Error::new(
            io::ErrorKind::UnexpectedEof,
            "hash pair must be 64 bytes",
        ));
    }
    let l_hash = blake3::Hash::from(<[u8; 32]>::try_from(&buf[..32]).unwrap());
    let r_hash = blake3::Hash::from(<[u8; 32]>::try_from(&buf[32..]).unwrap());
    Ok((l_hash, r_hash))
}

pub(crate) fn combine_hash_pair(l: &blake3::Hash, r: &blake3::Hash) -> [u8; 64] {
    let mut res = [0u8; 64];
    let lb: &mut [u8; 32] = (&mut res[0..32]).try_into().unwrap();
    *lb = *l.as_bytes();
    let rb: &mut [u8; 32] = (&mut res[32..]).try_into().unwrap();
    *rb = *r.as_bytes();
    res
}

/// Response decoder state machine, at the start of a stream
#[derive(Debug)]
pub struct ResponseDecoderStart<R> {
    ranges: ChunkRanges,
    block_size: BlockSize,
    hash: blake3::Hash,
    encoded: R,
}

impl<'a, R: AsyncRead + Unpin> ResponseDecoderStart<R> {
    /// Create a new response decoder state machine, at the start of a stream
    /// where you don't yet know the size.
    pub fn new(hash: blake3::Hash, ranges: ChunkRanges, block_size: BlockSize, encoded: R) -> Self {
        Self {
            ranges,
            block_size,
            hash,
            encoded,
        }
    }

    /// Immediately finish decoding the stream, returning the underlying reader
    pub fn finish(self) -> R {
        self.encoded
    }

    /// Read the size and go into the next state
    ///
    /// The only thing that can go wrong here is an io error when reading the size.
    pub async fn next(
        self,
    ) -> std::result::Result<(ResponseDecoderReading<R>, u64), StartDecodeError> {
        let Self {
            ranges,
            block_size,
            hash,
            mut encoded,
        } = self;
        let size = ByteNum(
            encoded
                .read_u64_le()
                .await
                .map_err(StartDecodeError::maybe_not_found)?,
        );
        let tree = BaoTree::new(size, block_size);
        let state = ResponseDecoderReading(Box::new(ResponseDecoderReadingInner::new(
            tree, hash, ranges, encoded,
        )));
        Ok((state, size.0))
    }

    /// Hash of the blob we are currently getting
    pub fn hash(&self) -> &blake3::Hash {
        &self.hash
    }

    /// The ranges we requested
    pub fn ranges(&self) -> &ChunkRanges {
        &self.ranges
    }
}

#[derive(Debug)]
struct ResponseDecoderReadingInner<R> {
    iter: ResponseIter,
    stack: SmallVec<[blake3::Hash; 10]>,
    encoded: R,
    buf: BytesMut,
}

impl<R> ResponseDecoderReadingInner<R> {
    fn new(tree: BaoTree, hash: blake3::Hash, ranges: ChunkRanges, encoded: R) -> Self {
        // now that we know the size, we can canonicalize the ranges
        let ranges = truncate_ranges_owned(ranges, tree.size());
        let mut res = Self {
            iter: ResponseIter::new(tree, ranges),
            stack: SmallVec::new(),
            encoded,
            buf: BytesMut::with_capacity(tree.chunk_group_bytes().to_usize()),
        };
        res.stack.push(hash);
        res
    }
}

/// Response decoder state machine, after reading the size
#[derive(Debug)]
pub struct ResponseDecoderReading<R>(Box<ResponseDecoderReadingInner<R>>);

/// Next type for ResponseDecoderReading.
#[derive(Debug)]
pub enum ResponseDecoderReadingNext<R> {
    /// One more item, and you get back the state machine in the next state
    More(
        (
            ResponseDecoderReading<R>,
            std::result::Result<BaoContentItem, DecodeError>,
        ),
    ),
    /// The stream is done, you get back the underlying reader
    Done(R),
}

impl<R: AsyncRead + Unpin> ResponseDecoderReading<R> {
    /// Create a new response decoder state machine, when you have already read the size.
    ///
    /// The size as well as the chunk size is given in the `tree` parameter.
    pub fn new(hash: blake3::Hash, ranges: ChunkRanges, tree: BaoTree, encoded: R) -> Self {
        let mut stack = SmallVec::new();
        stack.push(hash);
        Self(Box::new(ResponseDecoderReadingInner {
            iter: ResponseIter::new(tree, ranges),
            stack,
            encoded,
            buf: BytesMut::new(),
        }))
    }

    /// Proceed to the next state by reading the next chunk from the stream.
    pub async fn next(mut self) -> ResponseDecoderReadingNext<R> {
        if let Some(chunk) = self.0.iter.next() {
            let item = self.next0(chunk).await;
            ResponseDecoderReadingNext::More((self, item))
        } else {
            ResponseDecoderReadingNext::Done(self.0.encoded)
        }
    }

    /// Immediately return the underlying reader
    pub fn finish(self) -> R {
        self.0.encoded
    }

    /// The tree geometry
    pub fn tree(&self) -> BaoTree {
        self.0.iter.tree()
    }

    /// Hash of the blob we are currently getting
    pub fn hash(&self) -> &blake3::Hash {
        &self.0.stack[0]
    }

    async fn next0(&mut self, chunk: BaoChunk) -> std::result::Result<BaoContentItem, DecodeError> {
        Ok(match chunk {
            BaoChunk::Parent {
                is_root,
                right,
                left,
                node,
                ..
            } => {
                let mut buf = [0u8; 64];
                let this = &mut self.0;
                this.encoded
                    .read_exact(&mut buf)
                    .await
                    .map_err(|e| DecodeError::maybe_parent_not_found(e, node))?;
                let pair @ (l_hash, r_hash) = read_parent(&buf);
                let parent_hash = this.stack.pop().unwrap();
                let actual = parent_cv(&l_hash, &r_hash, is_root);
                // Push the children in reverse order so they are popped in the correct order
                // only push right if the range intersects with the right child
                if right {
                    this.stack.push(r_hash);
                }
                // only push left if the range intersects with the left child
                if left {
                    this.stack.push(l_hash);
                }
                // Validate after pushing the children so that we could in principle continue
                if parent_hash != actual {
                    return Err(DecodeError::ParentHashMismatch(node));
                }
                Parent { pair, node }.into()
            }
            BaoChunk::Leaf {
                size,
                is_root,
                start_chunk,
                ..
            } => {
                // this will resize always to chunk group size, except for the last chunk
                let this = &mut self.0;
                this.buf.resize(size, 0u8);
                this.encoded
                    .read_exact(&mut this.buf)
                    .await
                    .map_err(|e| DecodeError::maybe_leaf_not_found(e, start_chunk))?;
                let leaf_hash = this.stack.pop().unwrap();
                let actual = hash_subtree(start_chunk.0, &this.buf, is_root);
                if leaf_hash != actual {
                    return Err(DecodeError::LeafHashMismatch(start_chunk));
                }
                Leaf {
                    offset: start_chunk.to_bytes(),
                    data: self.0.buf.split().freeze(),
                }
                .into()
            }
        })
    }
}

/// Encode ranges relevant to a query from a reader and outboard to a writer
///
/// This will not validate on writing, so data corruption will be detected on reading
///
/// It is possible to encode ranges from a partial file and outboard.
/// This will either succeed if the requested ranges are all present, or fail
/// as soon as a range is missing.
pub async fn encode_ranges<D, O, W>(
    mut data: D,
    mut outboard: O,
    ranges: &ChunkRangesRef,
    encoded: W,
) -> result::Result<(), EncodeError>
where
    D: AsyncSliceReader,
    O: Outboard,
    W: AsyncStreamWriter,
{
    let mut encoded = encoded;
    let tree = outboard.tree();
    // write header
    encoded.write(tree.size.0.to_le_bytes().as_slice()).await?;
    for item in tree.ranges_pre_order_chunks_iter_ref(ranges, 0) {
        match item {
            BaoChunk::Parent { node, .. } => {
                let (l_hash, r_hash) = outboard.load(node).await?.unwrap();
                let pair = combine_hash_pair(&l_hash, &r_hash);
                encoded
                    .write(&pair)
                    .await
                    .map_err(|e| EncodeError::maybe_parent_write(e, node))?;
            }
            BaoChunk::Leaf {
                start_chunk, size, ..
            } => {
                let start = start_chunk.to_bytes();
                let bytes = data.read_at(start.0, size).await?;
                encoded
                    .write(&bytes)
                    .await
                    .map_err(|e| EncodeError::maybe_leaf_write(e, start_chunk))?;
            }
        }
    }
    Ok(())
}

/// Encode ranges relevant to a query from a reader and outboard to a writer
///
/// This function validates the data before writing
///
/// It is possible to encode ranges from a partial file and outboard.
/// This will either succeed if the requested ranges are all present, or fail
/// as soon as a range is missing.
pub async fn encode_ranges_validated<D, O, W>(
    mut data: D,
    mut outboard: O,
    ranges: &ChunkRangesRef,
    encoded: W,
) -> result::Result<(), EncodeError>
where
    D: AsyncSliceReader,
    O: Outboard,
    W: AsyncStreamWriter,
{
    // buffer for writing incomplete subtrees.
    // for queries that don't have incomplete subtrees, this will never be used.
    let mut out_buf = Vec::new();
    let mut stack = SmallVec::<[blake3::Hash; 10]>::new();
    stack.push(outboard.root());
    let mut encoded = encoded;
    let tree = outboard.tree();
    let ranges = truncate_ranges(ranges, tree.size());
    // write header
    encoded.write(tree.size.0.to_le_bytes().as_slice()).await?;
    for item in tree.ranges_pre_order_chunks_iter_ref(ranges, 0) {
        match item {
            BaoChunk::Parent {
                is_root,
                left,
                right,
                node,
                ..
            } => {
                let (l_hash, r_hash) = outboard.load(node).await?.unwrap();
                let actual = parent_cv(&l_hash, &r_hash, is_root);
                let expected = stack.pop().unwrap();
                if actual != expected {
                    return Err(EncodeError::ParentHashMismatch(node));
                }
                if right {
                    stack.push(r_hash);
                }
                if left {
                    stack.push(l_hash);
                }
                let pair = combine_hash_pair(&l_hash, &r_hash);
                encoded
                    .write(&pair)
                    .await
                    .map_err(|e| EncodeError::maybe_parent_write(e, node))?;
            }
            BaoChunk::Leaf {
                start_chunk,
                size,
                is_root,
                ranges,
                ..
            } => {
                let expected = stack.pop().unwrap();
                let start = start_chunk.to_bytes();
                let bytes = data.read_at(start.0, size).await?;
                let (actual, to_write) = if !ranges.is_all() {
                    // we need to encode just a part of the data
                    //
                    // write into an out buffer to ensure we detect mismatches
                    // before writing to the output.
                    out_buf.clear();
                    let actual = encode_selected_rec(
                        start_chunk,
                        &bytes,
                        is_root,
                        ranges,
                        tree.block_size.to_u32(),
                        true,
                        &mut out_buf,
                    );
                    (actual, &out_buf[..])
                } else {
                    let actual = hash_subtree(start_chunk.0, &bytes, is_root);
                    (actual, &bytes[..])
                };
                if actual != expected {
                    return Err(EncodeError::LeafHashMismatch(start_chunk));
                }
                encoded
                    .write(to_write)
                    .await
                    .map_err(|e| EncodeError::maybe_leaf_write(e, start_chunk))?;
            }
        }
    }
    Ok(())
}

/// Decode a response into a file while updating an outboard.
///
/// If you do not want to update an outboard, use [super::outboard::EmptyOutboard] as
/// the outboard.
pub async fn decode_response_into<R, O, W, F, Fut>(
    root: blake3::Hash,
    block_size: BlockSize,
    ranges: ChunkRanges,
    encoded: R,
    create: F,
    mut target: W,
) -> io::Result<Option<O>>
where
    O: OutboardMut,
    R: AsyncRead + Unpin,
    W: AsyncSliceWriter,
    F: FnOnce(blake3::Hash, BaoTree) -> Fut,
    Fut: Future<Output = io::Result<O>>,
{
    let start = ResponseDecoderStart::new(root, ranges, block_size, encoded);
    let (mut reading, _size) = start.next().await?;
    let mut outboard = None;
    let mut create = Some(create);
    loop {
        let item = match reading.next().await {
            ResponseDecoderReadingNext::Done(_reader) => break,
            ResponseDecoderReadingNext::More((next, item)) => {
                reading = next;
                item?
            }
        };
        match item {
            BaoContentItem::Parent(Parent { node, pair }) => {
                let outboard = if let Some(outboard) = outboard.as_mut() {
                    outboard
                } else {
                    let tree = reading.tree();
                    let create = create.take().unwrap();
                    let new = create(root, tree).await?;
                    outboard = Some(new);
                    outboard.as_mut().unwrap()
                };
                outboard.save(node, &pair).await?;
            }
            BaoContentItem::Leaf(Leaf { offset, data }) => {
                target.write_bytes_at(offset.0, data).await?;
            }
        }
    }
    Ok(outboard)
}
fn read_parent(buf: &[u8]) -> (blake3::Hash, blake3::Hash) {
    let l_hash = blake3::Hash::from(<[u8; 32]>::try_from(&buf[..32]).unwrap());
    let r_hash = blake3::Hash::from(<[u8; 32]>::try_from(&buf[32..64]).unwrap());
    (l_hash, r_hash)
}

/// Given an outboard, return a range set of all valid ranges
pub async fn valid_ranges<O>(outboard: &mut O) -> io::Result<ChunkRanges>
where
    O: Outboard,
{
    struct RecursiveValidator<'a, O: Outboard> {
        tree: BaoTree,
        shifted_filled_size: TreeNode,
        res: ChunkRanges,
        outboard: &'a mut O,
    }

    impl<'a, O: Outboard> RecursiveValidator<'a, O> {
        fn validate_rec<'b>(
            &'b mut self,
            parent_hash: &'b blake3::Hash,
            shifted: TreeNode,
            is_root: bool,
        ) -> LocalBoxFuture<'b, io::Result<()>> {
            async move {
                let node = shifted.subtract_block_size(self.tree.block_size.0);
                // if there is an IO error reading the hash, we simply continue without adding the range
                let (l_hash, r_hash) =
                    if let Some((l_hash, r_hash)) = self.outboard.load(node).await? {
                        let actual = parent_cv(&l_hash, &r_hash, is_root);
                        if &actual != parent_hash {
                            // we got a validation error. Simply continue without adding the range
                            return Ok(());
                        }
                        (l_hash, r_hash)
                    } else {
                        (*parent_hash, blake3::Hash::from([0; 32]))
                    };
                if shifted.is_leaf() {
                    let start = node.chunk_range().start;
                    let end = (start + self.tree.chunk_group_chunks() * 2).min(self.tree.chunks());
                    self.res |= ChunkRanges::from(start..end);
                } else {
                    // recurse
                    let left = shifted.left_child().unwrap();
                    self.validate_rec(&l_hash, left, false).await?;
                    let right = shifted.right_descendant(self.shifted_filled_size).unwrap();
                    self.validate_rec(&r_hash, right, false).await?;
                }
                Ok(())
            }
            .boxed_local()
        }
    }
    let tree = outboard.tree();
    let root_hash = outboard.root();
    let (shifted_root, shifted_filled_size) = tree.shifted();
    let mut validator = RecursiveValidator {
        tree,
        shifted_filled_size,
        res: ChunkRanges::empty(),
        outboard,
    };
    validator
        .validate_rec(&root_hash, shifted_root, true)
        .await?;
    Ok(validator.res)
}