1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
//! Iterators over BaoTree nodes
//!
//! Range iterators take a reference to the ranges, and therefore require a lifetime parameter.
//! They can be used without lifetime parameters using self referencing structs.
use std::fmt::{self, Debug};
use self_cell::self_cell;
use smallvec::SmallVec;
use crate::{split, BaoTree, BlockSize, ChunkNum, ChunkRanges, ChunkRangesRef, TreeNode};
/// Extended node info.
///
/// Some of the information is redundant, but it is convenient to have it all in one place.
///
/// Usually this is used within an iterator, so we hope that the compiler will optimize away
/// the redundant information.
#[derive(Debug, PartialEq, Eq)]
pub struct NodeInfo<'a> {
/// the node
pub node: TreeNode,
/// the node is the root node (needs special handling when computing hash)
pub is_root: bool,
/// ranges of the node and it's two children
pub ranges: &'a ChunkRangesRef,
/// left child intersection with the query range
pub l_ranges: &'a ChunkRangesRef,
/// right child intersection with the query range
pub r_ranges: &'a ChunkRangesRef,
/// the node is fully included in the query range
pub full: bool,
/// the node is a leaf for the purpose of this query
pub query_leaf: bool,
/// true if this node is the last leaf, and it is <= half full
pub is_half_leaf: bool,
}
/// Iterator over all nodes in a BaoTree in pre-order that overlap with a given chunk range.
///
/// This is mostly used internally
#[derive(Debug)]
pub struct PreOrderPartialIterRef<'a> {
/// the tree we want to traverse
tree: BaoTree,
/// the minimum level to always emit, even if the node is fully within the query range
min_level: u8,
/// stack of nodes to visit, together with the ranges that are relevant for the node
///
/// The node is shifted by the block size, so these are not normal nodes!
stack: SmallVec<[(TreeNode, &'a ChunkRangesRef); 8]>,
/// number of valid nodes, needed in shifted.right_descendant
///
/// This is also shifted by the block size!
shifted_filled_size: TreeNode,
/// The root node, shifted by the block size, needed for the is_root check
shifted_root: TreeNode,
}
impl<'a> PreOrderPartialIterRef<'a> {
/// Create a new iterator over the tree.
pub fn new(tree: BaoTree, ranges: &'a ChunkRangesRef, min_level: u8) -> Self {
let mut stack = SmallVec::new();
let (shifted_root, shifted_filled_size) = tree.shifted();
stack.push((shifted_root, ranges));
Self {
tree,
min_level,
stack,
shifted_filled_size,
shifted_root,
}
}
/// Get a reference to the tree.
pub fn tree(&self) -> &BaoTree {
&self.tree
}
}
impl<'a> Iterator for PreOrderPartialIterRef<'a> {
type Item = NodeInfo<'a>;
fn next(&mut self) -> Option<Self::Item> {
let tree = &self.tree;
loop {
let (shifted, ranges) = self.stack.pop()?;
if ranges.is_empty() {
continue;
}
let node = shifted.subtract_block_size(tree.block_size.0);
let is_half_leaf = !tree.is_persisted(node);
let (l_ranges, r_ranges) = if !is_half_leaf {
// the middle chunk of the node
let mid = node.mid();
// split the ranges into left and right
split(ranges, mid)
} else {
(ranges, ranges)
};
// check if the node is fully included
let full = ranges.is_all();
// we can't recurse if the node is a leaf
// we don't want to recurse if the node is full and below the minimum level
let query_leaf = shifted.is_leaf() || (full && node.level() < self.min_level as u32);
// recursion is just pushing the children onto the stack
if !query_leaf {
let l = shifted.left_child().unwrap();
let r = shifted.right_descendant(self.shifted_filled_size).unwrap();
// push right first so we pop left first
self.stack.push((r, r_ranges));
self.stack.push((l, l_ranges));
}
// the first node is the root, so just set the flag to false afterwards
let is_root = shifted == self.shifted_root;
// emit the node in any case
break Some(NodeInfo {
node,
ranges,
l_ranges,
r_ranges,
full,
query_leaf,
is_root,
is_half_leaf,
});
}
}
}
/// Iterator over all nodes in a tree in post-order.
///
/// If you want to iterate only down to some level, you need to shift the tree
/// before.
#[derive(Debug)]
pub struct PostOrderNodeIter {
/// the overall number of nodes in the tree
len: TreeNode,
/// the current node, None if we are done
curr: TreeNode,
/// where we came from, used to determine the next node
prev: Prev,
}
impl PostOrderNodeIter {
/// Create a new iterator given a root node and a len
pub fn new(root: TreeNode, len: TreeNode) -> Self {
Self {
curr: root,
len,
prev: Prev::Parent,
}
}
fn go_up(&mut self, curr: TreeNode) {
let prev = curr;
(self.curr, self.prev) = if let Some(parent) = curr.restricted_parent(self.len) {
(
parent,
if prev < parent {
Prev::Left
} else {
Prev::Right
},
)
} else {
(curr, Prev::Done)
};
}
}
impl Iterator for PostOrderNodeIter {
type Item = TreeNode;
fn next(&mut self) -> Option<Self::Item> {
loop {
let curr = self.curr;
match self.prev {
Prev::Parent => {
if let Some(child) = curr.left_child() {
// go left first when coming from above, don't emit curr
self.curr = child;
self.prev = Prev::Parent;
} else {
// we are a left or right leaf, go up and emit curr
self.go_up(curr);
break Some(curr);
}
}
Prev::Left => {
// no need to check is_leaf, since we come from a left child
// go right when coming from left, don't emit curr
self.curr = curr.right_descendant(self.len).unwrap();
self.prev = Prev::Parent;
}
Prev::Right => {
// go up in any case, do emit curr
self.go_up(curr);
break Some(curr);
}
Prev::Done => {
break None;
}
}
}
}
}
/// Iterator over all nodes in a BaoTree in pre-order.
#[derive(Debug)]
pub struct PreOrderNodeIter {
/// the overall number of nodes in the tree
len: TreeNode,
/// the current node, None if we are done
curr: TreeNode,
/// where we came from, used to determine the next node
prev: Prev,
}
impl PreOrderNodeIter {
/// Create a new iterator given a root node and a len
pub fn new(root: TreeNode, len: TreeNode) -> Self {
Self {
curr: root,
len,
prev: Prev::Parent,
}
}
fn go_up(&mut self, curr: TreeNode) {
let prev = curr;
(self.curr, self.prev) = if let Some(parent) = curr.restricted_parent(self.len) {
(
parent,
if prev < parent {
Prev::Left
} else {
Prev::Right
},
)
} else {
(curr, Prev::Done)
};
}
}
impl Iterator for PreOrderNodeIter {
type Item = TreeNode;
fn next(&mut self) -> Option<Self::Item> {
loop {
let curr = self.curr;
match self.prev {
Prev::Parent => {
if let Some(child) = curr.left_child() {
// go left first when coming from above
self.curr = child;
self.prev = Prev::Parent;
} else {
// we are a left or right leaf, go up
self.go_up(curr);
}
// emit curr before children (pre-order)
break Some(curr);
}
Prev::Left => {
// no need to check is_leaf, since we come from a left child
// go right when coming from left, don't emit curr
self.curr = curr.right_descendant(self.len).unwrap();
self.prev = Prev::Parent;
}
Prev::Right => {
// go up in any case
self.go_up(curr);
}
Prev::Done => {
break None;
}
}
}
}
}
#[derive(Debug)]
enum Prev {
Parent,
Left,
Right,
Done,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
/// A chunk describeds what to read or write next
///
/// In some cases you want additional information about what part of the chunk matches the query.
/// That is what the `R` type parameter is for. By default it is `()`.
pub enum BaoChunk<R = ()> {
/// expect a 64 byte parent node.
///
/// To validate, use parent_cv using the is_root value
Parent {
/// The tree node, useful for error reporting
node: TreeNode,
/// This is the root, to be passed to parent_cv
is_root: bool,
/// Push the left hash to the stack, since it will be needed later
left: bool,
/// Push the right hash to the stack, since it will be needed later
right: bool,
/// Additional information about what part of the chunk matches the query
ranges: R,
},
/// expect data of size `size`
///
/// To validate, use hash_block using the is_root and start_chunk values
Leaf {
/// Start chunk, to be passed to hash_block
start_chunk: ChunkNum,
/// Size of the data to expect. Will be chunk_group_bytes for all but the last block.
size: usize,
/// This is the root, to be passed to hash_block
is_root: bool,
/// Additional information about what part of the chunk matches the query
ranges: R,
},
}
impl<T> BaoChunk<T> {
#[cfg(test)]
pub fn to_debug_string(&self, max_level: usize) -> String {
match self {
BaoChunk::Parent { node, is_root, .. } => {
let n = max_level.saturating_sub(node.level() as usize + 1);
let prefix = " ".repeat(n);
let start_chunk = node.chunk_range().start;
format!(
"{}{},{},{}",
prefix,
start_chunk.to_bytes().0,
node.level(),
is_root
)
}
BaoChunk::Leaf {
start_chunk,
size,
is_root,
..
} => {
let prefix = " ".repeat(max_level);
format!(
"{}{},{},{}",
prefix,
start_chunk.to_bytes().0,
size,
is_root
)
}
}
}
/// Set the ranges to the unit value
pub fn without_ranges(&self) -> BaoChunk {
match self {
Self::Parent {
node,
is_root,
left,
right,
..
} => BaoChunk::Parent {
node: *node,
is_root: *is_root,
left: *left,
right: *right,
ranges: (),
},
Self::Leaf {
start_chunk,
size,
is_root,
..
} => BaoChunk::Leaf {
start_chunk: *start_chunk,
size: *size,
is_root: *is_root,
ranges: (),
},
}
}
}
/// Iterator over all chunks in a BaoTree in post-order.
#[derive(Debug)]
pub struct PostOrderChunkIter {
tree: BaoTree,
inner: PostOrderNodeIter,
// stack with 2 elements, since we can only have 2 items in flight
stack: SmallVec<[BaoChunk; 2]>,
shifted_root: TreeNode,
}
impl PostOrderChunkIter {
/// Create a new iterator over the tree.
pub fn new(tree: BaoTree) -> Self {
let (shifted_root, shifted_len) = tree.shifted();
let inner = PostOrderNodeIter::new(shifted_root, shifted_len);
Self {
tree,
inner,
stack: Default::default(),
shifted_root,
}
}
}
impl Iterator for PostOrderChunkIter {
type Item = BaoChunk;
fn next(&mut self) -> Option<Self::Item> {
loop {
if let Some(item) = self.stack.pop() {
return Some(item);
}
let shifted = self.inner.next()?;
// the is_root check needs to be done before shifting the node
let is_root = shifted == self.shifted_root;
let node = shifted.subtract_block_size(self.tree.block_size.0);
if shifted.is_leaf() {
let tree = &self.tree;
let (s, m, e) = tree.leaf_byte_ranges3(node);
let l_start_chunk = node.chunk_range().start;
let r_start_chunk = l_start_chunk + tree.chunk_group_chunks();
let is_half_leaf = m == e;
// for the half leaf we emit just the leaf
// for all other leaves we emit the parent and two leaves
if !is_half_leaf {
self.stack.push(BaoChunk::Parent {
node,
is_root,
left: true,
right: true,
ranges: (),
});
self.stack.push(BaoChunk::Leaf {
is_root: false,
start_chunk: r_start_chunk,
size: (e - m).to_usize(),
ranges: (),
});
};
break Some(BaoChunk::Leaf {
is_root: is_root && is_half_leaf,
start_chunk: l_start_chunk,
size: (m - s).to_usize(),
ranges: (),
});
} else {
self.stack.push(BaoChunk::Parent {
node,
is_root,
left: true,
right: true,
ranges: (),
});
}
}
}
}
impl BaoChunk {
/// Return the size of the chunk in bytes.
pub fn size(&self) -> usize {
match self {
Self::Parent { .. } => 64,
Self::Leaf { size, .. } => *size,
}
}
}
impl<T: Default> Default for BaoChunk<T> {
fn default() -> Self {
Self::Leaf {
is_root: true,
size: 0,
start_chunk: ChunkNum(0),
ranges: T::default(),
}
}
}
/// Iterator over all nodes in a BaoTree in pre-order that overlap with a given chunk range.
///
/// This is mostly used internally
#[derive(Debug)]
pub struct PreOrderPartialChunkIterRef<'a> {
/// the tree we want to traverse
tree: BaoTree,
/// the minimum level to always emit, even if the node is fully within the query range
min_full_level: u8,
/// stack of nodes to visit, together with the ranges that are relevant for the node
///
/// The node is shifted by the block size, so these are not normal nodes!
stack: SmallVec<[(TreeNode, &'a ChunkRangesRef); 8]>,
/// number of valid nodes, needed in shifted.right_descendant
///
/// This is also shifted by the block size!
shifted_filled_size: TreeNode,
/// The root node, shifted by the block size, needed for the is_root check
shifted_root: TreeNode,
/// chunk buffer. This will only ever contain leaves, and will never be more than 2 elements
buffer: SmallVec<[BaoChunk<&'a ChunkRangesRef>; 2]>,
}
impl<'a> PreOrderPartialChunkIterRef<'a> {
/// Create a new iterator over the tree.
pub fn new(tree: BaoTree, ranges: &'a ChunkRangesRef, min_full_level: u8) -> Self {
let mut stack = SmallVec::new();
let (shifted_root, shifted_filled_size) = tree.shifted();
stack.push((shifted_root, ranges));
Self {
tree,
min_full_level,
stack,
shifted_filled_size,
shifted_root,
buffer: SmallVec::new(),
}
}
/// Get a reference to the tree.
pub fn tree(&self) -> &BaoTree {
&self.tree
}
/// Get the minimum level to always emit, even if the node is fully within the query range
pub fn min_full_level(&self) -> u8 {
self.min_full_level
}
}
impl<'a> Iterator for PreOrderPartialChunkIterRef<'a> {
type Item = BaoChunk<&'a ChunkRangesRef>;
fn next(&mut self) -> Option<Self::Item> {
if let Some(item) = self.buffer.pop() {
return Some(item);
}
let tree = &self.tree;
let (shifted, ranges) = self.stack.pop()?;
debug_assert!(!ranges.is_empty());
let node = shifted.subtract_block_size(tree.block_size.0);
// we don't want to recurse if the node is full and below the minimum level
let query_leaf = ranges.is_all() && node.level() < self.min_full_level as u32;
// check if the node is the root by comparing the shifted node to the shifted root
let is_root = shifted == self.shifted_root;
let chunk_range = node.chunk_range();
let byte_range = tree.byte_range(node);
let size = (byte_range.end - byte_range.start).to_usize();
// There are three cases.
if query_leaf {
// The node is a query leaf, meaning that we stop descending because the
// node is fully within the query range and it's level is below min_full_level.
// This can be fully disabled by setting min_full_level to 0.
//
// In this case we just emit the range of the node, and don't recurse.
Some(BaoChunk::Leaf {
start_chunk: chunk_range.start,
size,
is_root,
ranges,
})
} else if !shifted.is_leaf() {
// The node is either not fully within the query range, or it's level is above
// min_full_level. In this case we need to recurse.
let (l_ranges, r_ranges) = split(ranges, node.mid());
// emit right child first, so it gets yielded last
if !r_ranges.is_empty() {
let r = shifted.right_descendant(self.shifted_filled_size).unwrap();
self.stack.push((r, r_ranges));
}
// emit left child second, so it gets yielded first
if !l_ranges.is_empty() {
let l = shifted.left_child().unwrap();
self.stack.push((l, l_ranges));
}
// immediately emit the parent
Some(BaoChunk::Parent {
node,
left: !l_ranges.is_empty(),
right: !r_ranges.is_empty(),
is_root,
ranges,
})
} else {
// The node is a real leaf.
//
// If it is a normal leaf and we got this far, we need to split it into 2 ranges.
// E.g. the first leaf of a tree covers the range 0..2048, but we want two 1024
// byte BLAKE3 chunks.
//
// There is a special case for the last leaf, if its right range is not within the
// tree. In this case we don't need to split it, and can just emit it as is.
let mid_chunk = node.mid();
let mid = mid_chunk.to_bytes();
if mid >= tree.size {
// this is the last leaf node, and only it's left part is in the range
// we can just emit it without splitting
Some(BaoChunk::Leaf {
start_chunk: chunk_range.start,
size,
is_root,
ranges,
})
} else {
let (l_ranges, r_ranges) = split(ranges, node.mid());
// emit right range first, so it gets yielded last
if !r_ranges.is_empty() {
self.buffer.push(BaoChunk::Leaf {
start_chunk: mid_chunk,
size: (byte_range.end - mid).to_usize(),
is_root: false,
ranges: r_ranges,
});
}
// emit left range second, so it gets yielded first
if !l_ranges.is_empty() {
self.buffer.push(BaoChunk::Leaf {
start_chunk: chunk_range.start,
size: (mid - byte_range.start).to_usize(),
is_root: false,
ranges: l_ranges,
});
}
// immediately emit the parent
Some(BaoChunk::Parent {
node,
left: !l_ranges.is_empty(),
right: !r_ranges.is_empty(),
is_root,
ranges,
})
}
}
}
}
/// An iterator that produces chunks in pre order.
///
/// This wraps a `PreOrderPartialIterRef` and iterates over the chunk groups
/// all the way down to individual chunks if needed.
#[derive(Debug)]
pub struct ResponseIterRef<'a> {
inner: PreOrderPartialChunkIterRef<'a>,
}
impl<'a> ResponseIterRef<'a> {
/// Create a new iterator over the tree.
pub fn new(tree: BaoTree, ranges: &'a ChunkRangesRef) -> Self {
let tree1 = BaoTree::new(tree.size, BlockSize::ZERO);
Self {
inner: PreOrderPartialChunkIterRef::new(tree1, ranges, tree.block_size.0),
}
}
/// Return the underlying tree.
pub fn tree(&self) -> BaoTree {
// the inner iterator uses a tree with block size 0, so we need to return the original tree
BaoTree::new(
self.inner.tree().size,
BlockSize(self.inner.min_full_level()),
)
}
}
impl<'a> Iterator for ResponseIterRef<'a> {
type Item = BaoChunk;
fn next(&mut self) -> Option<Self::Item> {
Some(self.inner.next()?.without_ranges())
}
}
self_cell! {
pub(crate) struct ResponseIterInner {
owner: ChunkRanges,
#[not_covariant]
dependent: ResponseIterRef,
}
}
impl ResponseIterInner {
fn next(&mut self) -> Option<BaoChunk> {
self.with_dependent_mut(|_, iter| iter.next())
}
fn tree(&self) -> BaoTree {
self.with_dependent(|_, iter| iter.tree())
}
}
/// The owned version of `ResponseIterRef`.
pub struct ResponseIter(ResponseIterInner);
impl fmt::Debug for ResponseIter {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("ResponseIter").finish_non_exhaustive()
}
}
impl ResponseIter {
/// Create a new iterator over the tree.
pub fn new(tree: BaoTree, ranges: ChunkRanges) -> Self {
Self(ResponseIterInner::new(ranges, |ranges| {
ResponseIterRef::new(tree, ranges)
}))
}
/// The tree this iterator is iterating over.
pub fn tree(&self) -> BaoTree {
self.0.tree()
}
}
impl Iterator for ResponseIter {
type Item = BaoChunk;
fn next(&mut self) -> Option<Self::Item> {
self.0.next()
}
}