1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
/* This file is part of bacon.
 * Copyright (c) Wyatt Campbell.
 *
 * See repository LICENSE for information.
 */

use super::{IVPSolver, IVPStatus};
use alga::general::{ComplexField, RealField};
use nalgebra::DVector;
use num_traits::{FromPrimitive, Zero};

/// This trait allows a struct to be used in the Runge-Kutta solver.
///
/// Things implementing RungeKuttaSolver should have an RKInfo to handle
/// the actual IVP solving. It should also provide the with_* helper functions
/// for convience.
///
/// # Examples
/// See `struct RK45` for an example of implementing this trait
pub trait RungeKuttaSolver<N: ComplexField>: Sized {
    /// Returns a vec of coeffecients to multiply the time step by when getting
    /// intermediate results. Upper-left portion of Butch Tableaux
    fn t_coefficients() -> Vec<N::RealField>;

    /// Returns the coefficients to use on the k_i's when finding another
    /// k_i. Upper-right portion of the Butch Tableax. Should be
    /// an NxN-1 matrix, where N is the order of the Runge-Kutta Method (Or order+1 for
    /// adaptive methods)
    fn k_coefficients() -> Vec<Vec<N::RealField>>;

    /// Coefficients to use when calculating the final step to take.
    /// These are the weights of the weighted average of k_i's. Bottom
    /// portion of the Butch Tableaux. For adaptive methods, this is the first
    /// row of the bottom portion.
    fn avg_coefficients() -> Vec<N::RealField>;

    /// Coefficients to use on
    /// the k_i's to find the error between the two orders
    /// of Runge-Kutta methods. In the Butch Tableaux, this is
    /// the first row of the bottom portion minus the second row.
    fn error_coefficients() -> Vec<N::RealField>;

    /// Ideally, call RKInfo.solve_ivp
    fn solve_ivp<T: Clone, F: Fn(N::RealField, &[N], &mut T) -> Result<DVector<N>, String>>(
        self,
        f: F,
        params: &mut T,
    ) -> super::Path<N, N::RealField>;

    /// Set the error tolerance for this solver.
    fn with_tolerance(self, tol: N::RealField) -> Result<Self, String>;
    /// Set the maximum time step for this solver.
    fn with_dt_max(self, max: N::RealField) -> Result<Self, String>;
    /// Set the minimum time step for this solver.
    fn with_dt_min(self, min: N::RealField) -> Result<Self, String>;
    /// Set the initial time for this solver.
    fn with_start(self, t_initial: N::RealField) -> Result<Self, String>;
    /// Set the end time for this solver.
    fn with_end(self, t_final: N::RealField) -> Result<Self, String>;
    /// Set the initial conditions for this solver.
    fn with_initial_conditions(self, start: &[N]) -> Result<Self, String>;
    /// Build this solver.
    fn build(self) -> Self;
}

/// Provides an IVPSolver implementation for RungeKuttaSolver,
/// based entirely on the Butch Tableaux coefficients. It is up
/// to the RungeKuttaSolver to set up RKInfo. See RK45 for an example.
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serialize", derive(Serialize, Deserialize))]
pub struct RKInfo<N: ComplexField> {
    dt: Option<N::RealField>,
    time: Option<N::RealField>,
    end: Option<N::RealField>,
    state: Option<DVector<N>>,
    dt_max: Option<N::RealField>,
    dt_min: Option<N::RealField>,
    tolerance: Option<N::RealField>,
    a_coefficients: Vec<N::RealField>,
    k_coefficients: Vec<Vec<N::RealField>>,
    avg_coefficients: Vec<N::RealField>,
    error_coefficients: Vec<N::RealField>,
}

impl<N: ComplexField> RKInfo<N> {
    fn new() -> Self {
        RKInfo {
            dt: None,
            time: None,
            end: None,
            state: None,
            dt_max: None,
            dt_min: None,
            tolerance: None,
            a_coefficients: vec![],
            k_coefficients: vec![],
            avg_coefficients: vec![],
            error_coefficients: vec![],
        }
    }
}

impl<N: ComplexField> Default for RKInfo<N> {
    fn default() -> Self {
        Self::new()
    }
}

impl<N: ComplexField> IVPSolver<N> for RKInfo<N> {
    fn step<T: Clone, F: Fn(N::RealField, &[N], &mut T) -> Result<DVector<N>, String>>(
        &mut self,
        f: F,
        params: &mut T,
    ) -> Result<IVPStatus<N>, String> {
        if self.time.unwrap() >= self.end.unwrap() {
            return Ok(IVPStatus::Done);
        }

        let tenth_real = N::RealField::from_f64(0.1).unwrap();
        let quater_real = N::RealField::from_f64(0.25).unwrap();
        let eighty_fourths_real = N::RealField::from_f64(0.84).unwrap();
        let four_real = N::RealField::from_i32(4).unwrap();

        let mut set_dt = false;
        if self.time.unwrap() + self.dt.unwrap() >= self.end.unwrap() {
            set_dt = true;
            self.dt = Some(self.end.unwrap() - self.time.unwrap());
        }

        let num_k = self.k_coefficients.len();

        let mut half_steps: Vec<DVector<N>> = Vec::with_capacity(num_k);
        for i in 0..num_k {
            let mut state = self.state.as_ref().unwrap().clone();
            for (j, k) in half_steps.iter().enumerate() {
                state += k * N::from_real(self.k_coefficients[i][j]);
            }
            half_steps.push(
                f(
                    self.time.unwrap() + self.a_coefficients[i] * self.dt.unwrap(),
                    state.column(0).as_slice(),
                    &mut params.clone(),
                )? * N::from_real(self.dt.unwrap()),
            );
        }

        let mut error_vec = half_steps[0].clone() * N::from_real(self.error_coefficients[0]);
        for (ind, k) in half_steps.iter().enumerate().skip(1) {
            error_vec += k * N::from_real(self.error_coefficients[ind]);
        }
        let error = error_vec.dot(&error_vec).real() / self.dt.unwrap();

        let mut output = false;
        if error <= self.tolerance.unwrap() {
            output = true;
            *self.time.get_or_insert(N::RealField::zero()) += self.dt.unwrap();
            for (ind, k) in half_steps.iter().enumerate() {
                *self
                    .state
                    .get_or_insert(DVector::from_column_slice(&[N::zero()])) +=
                    k * N::from_real(self.avg_coefficients[ind]);
            }
        }

        let delta = eighty_fourths_real * (self.tolerance.unwrap() / error).powf(quater_real);
        if delta <= tenth_real {
            *self.dt.get_or_insert(N::RealField::zero()) *= tenth_real;
        } else if delta >= four_real {
            *self.dt.get_or_insert(N::RealField::zero()) *= four_real;
        } else {
            *self.dt.get_or_insert(N::RealField::zero()) *= delta;
        }

        if self.dt.unwrap() > self.dt_max.unwrap() {
            self.dt = Some(self.dt_max.unwrap());
        }

        if !set_dt && self.dt.unwrap() < self.dt_min.unwrap() {
            return Err("RKInfo step: minimum dt exceeded".to_owned());
        }

        if output {
            Ok(IVPStatus::Ok(vec![(
                self.time.unwrap(),
                self.state.as_ref().unwrap().clone(),
            )]))
        } else {
            Ok(IVPStatus::Redo)
        }
    }

    fn with_tolerance(mut self, tol: N::RealField) -> Result<Self, String> {
        if !tol.is_sign_positive() {
            return Err("RKInfo with_tolerance: tolerance must be postive".to_owned());
        }
        self.tolerance = Some(tol);
        Ok(self)
    }

    fn with_dt_max(mut self, max: N::RealField) -> Result<Self, String> {
        if !max.is_sign_positive() {
            return Err("RKInfo with_dt_max: dt_max must be positive".to_owned());
        }
        if let Some(min) = self.dt_min {
            if max <= min {
                return Err("RKInfo with_dt_max: dt_max must be greater than dt_min".to_owned());
            }
        }
        self.dt_max = Some(max);
        self.dt = Some(max);
        Ok(self)
    }

    fn with_dt_min(mut self, min: N::RealField) -> Result<Self, String> {
        if !min.is_sign_positive() {
            return Err("RKInfo with_dt_min: dt_min must be positive".to_owned());
        }
        if let Some(max) = self.dt_max {
            if min >= max {
                return Err("RKInfo with_dt_min: dt_min must be less than dt_max".to_owned());
            }
        }
        self.dt_min = Some(min);
        Ok(self)
    }

    fn with_start(mut self, t_initial: N::RealField) -> Result<Self, String> {
        if let Some(end) = self.end {
            if end <= t_initial {
                return Err("RKInfo with_start: Start must be before end".to_owned());
            }
        }
        self.time = Some(t_initial);
        Ok(self)
    }

    fn with_end(mut self, t_final: N::RealField) -> Result<Self, String> {
        if let Some(start) = self.time {
            if t_final <= start {
                return Err("RKInfo with_end: Start must be before end".to_owned());
            }
        }
        self.end = Some(t_final);
        Ok(self)
    }

    fn with_initial_conditions(mut self, start: &[N]) -> Result<Self, String> {
        self.state = Some(DVector::from_column_slice(start));
        Ok(self)
    }

    fn build(self) -> Self {
        self
    }

    fn get_initial_conditions(&self) -> Option<DVector<N>> {
        if let Some(state) = &self.state {
            Some(state.clone())
        } else {
            None
        }
    }

    fn get_time(&self) -> Option<N::RealField> {
        if let Some(time) = &self.time {
            Some(*time)
        } else {
            None
        }
    }

    fn check_start(&self) -> Result<(), String> {
        if self.time == None {
            Err("RKInfo check_start: No initial time".to_owned())
        } else if self.end == None {
            Err("RKInfo check_start: No end time".to_owned())
        } else if self.tolerance == None {
            Err("RKInfo check_start: No tolerance".to_owned())
        } else if self.state == None {
            Err("RKInfo check_start: No initial conditions".to_owned())
        } else if self.dt_max == None {
            Err("RKInfo check_start: No dt_max".to_owned())
        } else if self.dt_min == None {
            Err("RKInfo check_start: No dt_min".to_owned())
        } else {
            Ok(())
        }
    }
}

/// Runge-Kutta-Fehlberg method for solving an IVP.
///
/// Defines the Butch Tableaux for a 5(4) order adaptive
/// runge-kutta method. Uses RKInfo to do the actual solving.
/// Provides an interface for setting the conditions on RKInfo.
///
/// # Examples
/// ```
/// use nalgebra::DVector;
/// use bacon_sci::ivp::{IVPSolver, RK45, RungeKuttaSolver};
/// fn derivatives(_t: f64, state: &[f64], _p: &mut ()) -> Result<DVector<f64>, String> {
///     Ok(DVector::from_column_slice(state))
/// }
///
/// fn example() -> Result<(), String> {
///     let rk45 = RK45::new()
///         .with_dt_max(0.1)?
///         .with_dt_min(0.001)?
///         .with_start(0.0)?
///         .with_end(10.0)?
///         .with_tolerance(0.0001)?
///         .with_initial_conditions(&[1.0])?
///         .build();
///     let path = rk45.solve_ivp(derivatives, &mut ())?;
///     for (time, state) in &path {
///         assert!((time.exp() - state.column(0)[0]).abs() < 0.001);
///     }
///     Ok(())
/// }
/// ```
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serialize", derive(Serialize, Deserialize))]
pub struct RK45<N: ComplexField> {
    info: RKInfo<N>,
}

impl<N: ComplexField> RK45<N> {
    pub fn new() -> Self {
        let mut info = RKInfo::<N>::new();
        info.a_coefficients = Self::t_coefficients();
        info.k_coefficients = Self::k_coefficients();
        info.avg_coefficients = Self::avg_coefficients();
        info.error_coefficients = Self::error_coefficients();
        RK45 { info }
    }
}

impl<N: ComplexField> Default for RK45<N> {
    fn default() -> Self {
        Self::new()
    }
}

impl<N: ComplexField> RungeKuttaSolver<N> for RK45<N> {
    fn t_coefficients() -> Vec<N::RealField> {
        vec![
            N::RealField::from_f64(0.0).unwrap(),
            N::RealField::from_f64(0.25).unwrap(),
            N::RealField::from_f64(3.0 / 8.0).unwrap(),
            N::RealField::from_f64(12.0 / 13.0).unwrap(),
            N::RealField::from_f64(1.0).unwrap(),
            N::RealField::from_f64(0.5).unwrap(),
        ]
    }

    fn k_coefficients() -> Vec<Vec<N::RealField>> {
        vec![
            vec![],
            vec![N::RealField::from_f64(0.25).unwrap()],
            vec![
                N::RealField::from_f64(3.0 / 32.0).unwrap(),
                N::RealField::from_f64(9.0 / 32.0).unwrap(),
            ],
            vec![
                N::RealField::from_f64(1932.0 / 2197.0).unwrap(),
                N::RealField::from_f64(-7200.0 / 2197.0).unwrap(),
                N::RealField::from_f64(7296.0 / 2197.0).unwrap(),
            ],
            vec![
                N::RealField::from_f64(439.0 / 216.0).unwrap(),
                N::RealField::from_f64(-8.0).unwrap(),
                N::RealField::from_f64(3680.0 / 513.0).unwrap(),
                N::RealField::from_f64(-845.0 / 4104.0).unwrap(),
            ],
            vec![
                N::RealField::from_f64(-8.0 / 27.0).unwrap(),
                N::RealField::from_f64(2.0).unwrap(),
                N::RealField::from_f64(-3544.0 / 2565.0).unwrap(),
                N::RealField::from_f64(1859.0 / 4104.0).unwrap(),
                N::RealField::from_f64(-11.0 / 40.0).unwrap(),
            ],
        ]
    }

    fn avg_coefficients() -> Vec<N::RealField> {
        vec![
            N::RealField::from_f64(25.0 / 216.0).unwrap(),
            N::RealField::from_f64(0.0).unwrap(),
            N::RealField::from_f64(1408.0 / 2565.0).unwrap(),
            N::RealField::from_f64(2197.0 / 4104.0).unwrap(),
            N::RealField::from_f64(-1.0 / 5.0).unwrap(),
            N::RealField::from_f64(0.0).unwrap(),
        ]
    }

    fn error_coefficients() -> Vec<N::RealField> {
        vec![
            N::RealField::from_f64(1.0 / 360.0).unwrap(),
            N::RealField::from_f64(0.0).unwrap(),
            N::RealField::from_f64(-128.0 / 4275.0).unwrap(),
            N::RealField::from_f64(-2197.0 / 75240.0).unwrap(),
            N::RealField::from_f64(1.0 / 50.0).unwrap(),
            N::RealField::from_f64(2.0 / 55.0).unwrap(),
        ]
    }

    fn solve_ivp<T: Clone, F: Fn(N::RealField, &[N], &mut T) -> Result<DVector<N>, String>>(
        self,
        f: F,
        params: &mut T,
    ) -> super::Path<N, N::RealField> {
        self.info.solve_ivp(f, params)
    }

    fn with_tolerance(mut self, tol: N::RealField) -> Result<Self, String> {
        self.info = self.info.with_tolerance(tol)?;
        Ok(self)
    }

    fn with_dt_max(mut self, max: N::RealField) -> Result<Self, String> {
        self.info = self.info.with_dt_max(max)?;
        Ok(self)
    }

    fn with_dt_min(mut self, min: N::RealField) -> Result<Self, String> {
        self.info = self.info.with_dt_min(min)?;
        Ok(self)
    }

    fn with_start(mut self, t_initial: N::RealField) -> Result<Self, String> {
        self.info = self.info.with_start(t_initial)?;
        Ok(self)
    }

    fn with_end(mut self, t_final: N::RealField) -> Result<Self, String> {
        self.info = self.info.with_end(t_final)?;
        Ok(self)
    }

    fn with_initial_conditions(mut self, start: &[N]) -> Result<Self, String> {
        self.info = self.info.with_initial_conditions(start)?;
        Ok(self)
    }

    fn build(self) -> Self {
        self
    }
}

impl<N: ComplexField> From<RK45<N>> for RKInfo<N> {
    fn from(rk: RK45<N>) -> RKInfo<N> {
        rk.info
    }
}