1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
use crate::polynomial::Polynomial;
use crate::roots::newton_polynomial;
use nalgebra::ComplexField;
use num_traits::FromPrimitive;
/// Get the nth legendre polynomial.
///
/// Gets the nth legendre polynomial over a specified field. This is
/// done using the recurrence relation and is properly normalized.
///
/// # Errors
/// Returns an error if `tol` is invalid.
///
/// # Panics
/// Panics if a u8 or a u32 can not be converted into the generic type.
///
/// # Examples
/// ```
/// use bacon_sci::special::legendre;
/// fn example() {
/// let p_3 = legendre::<f64>(3, 1e-8).unwrap();
/// assert_eq!(p_3.order(), 3);
/// assert!(p_3.get_coefficient(0).abs() < 0.00001);
/// assert!((p_3.get_coefficient(1) + 1.5).abs() < 0.00001);
/// assert!(p_3.get_coefficient(2).abs() < 0.00001);
/// assert!((p_3.get_coefficient(3) - 2.5).abs() < 0.00001);
/// }
///
pub fn legendre<N: ComplexField + FromPrimitive + Copy>(
n: u32,
tol: N::RealField,
) -> Result<Polynomial<N>, String>
where
<N as ComplexField>::RealField: FromPrimitive + Copy,
{
if n == 0 {
let mut poly = polynomial![N::one()];
poly.set_tolerance(tol)?;
return Ok(poly);
}
if n == 1 {
let mut poly = polynomial![N::one(), N::zero()];
poly.set_tolerance(tol)?;
return Ok(poly);
}
let mut p_0 = polynomial![N::one()];
p_0.set_tolerance(tol)?;
let mut p_1 = polynomial![N::one(), N::zero()];
p_1.set_tolerance(tol)?;
for i in 1..n {
// Get p_i+1 from p_i and p_i-1
let mut p_next = polynomial![N::from_u32(2 * i + 1).unwrap(), N::zero()] * &p_1;
p_next.set_tolerance(tol)?;
p_next -= &p_0 * N::from_u32(i).unwrap();
p_next /= N::from_u32(i + 1).unwrap();
p_0 = p_1;
p_1 = p_next;
}
Ok(p_1)
}
/// Get the zeros of the nth legendre polynomial.
/// Calculate zeros to tolerance `tol`, have polynomials
/// with tolerance `poly_tol`.
///
/// # Errors
/// Returns an error if `tol` or `poly_tol` are invalid
pub fn legendre_zeros<N: ComplexField + FromPrimitive + Copy>(
n: u32,
tol: N::RealField,
poly_tol: N::RealField,
n_max: usize,
) -> Result<Vec<N>, String>
where
<N as ComplexField>::RealField: FromPrimitive + Copy,
{
if n == 0 {
return Ok(vec![]);
}
if n == 1 {
return Ok(vec![N::zero()]);
}
let poly: Polynomial<N> = legendre(n, poly_tol)?;
Ok(poly
.roots(tol, n_max)?
.iter()
.map(|c| {
if c.re.abs() < tol {
N::zero()
} else {
N::from_real(c.re)
}
})
.collect())
}
/// Get the nth hermite polynomial.
///
/// Gets the nth physicist's hermite polynomial over a specified field. This is
/// done using the recurrance relation so the normalization is standard for the
/// physicist's hermite polynomial.
///
/// # Errors
/// Returns an error if `tol` is invalid.
///
/// # Panics
/// Panics if a u8 or u32 can not be converted into the generic type.
///
/// # Examples
/// ```
/// use bacon_sci::special::hermite;
/// fn example() {
/// let h_3 = hermite::<f64>(3, 1e-8).unwrap();
/// assert_eq!(h_3.order(), 3);
/// assert!(h_3.get_coefficient(0).abs() < 0.0001);
/// assert!((h_3.get_coefficient(1) - 12.0).abs() < 0.0001);
/// assert!(h_3.get_coefficient(2).abs() < 0.0001);
/// assert!((h_3.get_coefficient(3) - 8.0).abs() < 0.0001);
/// }
/// ```
pub fn hermite<N: ComplexField + FromPrimitive + Copy>(
n: u32,
tol: N::RealField,
) -> Result<Polynomial<N>, String>
where
<N as ComplexField>::RealField: FromPrimitive + Copy,
{
if n == 0 {
let mut poly = polynomial![N::one()];
poly.set_tolerance(tol)?;
return Ok(poly);
}
if n == 1 {
let mut poly = polynomial![N::from_u8(2).unwrap(), N::zero()];
poly.set_tolerance(tol)?;
return Ok(poly);
}
let mut h_0 = polynomial![N::one()];
h_0.set_tolerance(tol)?;
let mut h_1 = polynomial![N::from_u8(2).unwrap(), N::zero()];
h_1.set_tolerance(tol)?;
let x_2 = h_1.clone();
for i in 1..n {
let next = &x_2 * &h_1 - (&h_0 * N::from_u32(2 * i).unwrap());
h_0 = h_1;
h_1 = next;
}
Ok(h_1)
}
/// Get the zeros of the nth Hermite polynomial within tolerance `tol` with polynomial
/// tolerance `poly_tol`
///
/// # Errors
/// Returns an error if `poly_tol` or `tol` are invalid.
///
/// # Panics
/// Panics if a u32 or f32 can not be converted into the generic type.
pub fn hermite_zeros<N: ComplexField + FromPrimitive + Copy>(
n: u32,
tol: N::RealField,
poly_tol: N::RealField,
n_max: usize,
) -> Result<Vec<N>, String>
where
<N as ComplexField>::RealField: FromPrimitive + Copy,
{
if n == 0 {
return Ok(vec![]);
}
if n == 1 {
return Ok(vec![N::zero()]);
}
let poly: Polynomial<N> = hermite(n, poly_tol)?;
// Get initial guesses of zeros with asymptotic formula
let mut zeros = Vec::with_capacity(n as usize);
let special = N::from_f32(3.3721 / 6.0.cbrt()).unwrap();
let third = N::from_f32(1.0 / 3.0).unwrap().real();
for i in 1..=n {
let sqrt = N::from_u32(2 * i).unwrap().sqrt();
zeros.push(sqrt - special * sqrt.powf(-third));
}
// Use newton's method and deflation to refine guesses
let mut deflator = poly.clone();
let mut zs = Vec::with_capacity(zeros.len());
for z in &zeros {
let zero = newton_polynomial(*z, &deflator, tol, n_max)?;
let divisor = polynomial![N::one(), -zero];
let (quotient, _) = deflator.divide(&divisor)?;
// Adjust for round off error
let zero = newton_polynomial(zero, &poly, tol, n_max)?;
zs.push(zero);
deflator = quotient;
}
Ok(zs)
}
fn factorial<N: ComplexField + FromPrimitive>(k: u32) -> N {
let mut acc = N::one();
for i in 2..=k {
acc *= N::from_u32(i).unwrap();
}
acc
}
fn choose<N: ComplexField + FromPrimitive>(n: u32, k: u32) -> N {
let mut acc = N::one();
for i in n - k + 1..=n {
acc *= N::from_u32(i).unwrap();
}
for i in 2..=k {
acc /= N::from_u32(i).unwrap();
}
acc
}
/// Get the nth (positive) laguerre polynomial.
///
/// Gets the nth (positive) laguerre polynomial over a specified field. This is
/// done using the direct formula and is properly normalized.
///
/// # Errors
/// Returns an error if `tol` is invalid.
///
/// # Examples
/// ```
/// use bacon_sci::special::laguerre;
/// fn example() {
/// let p_3 = laguerre::<f64>(3, 1e-8).unwrap();
/// assert_eq!(p_3.order(), 3);
/// assert!((p_3.get_coefficient(0) - 1.0).abs() < 0.00001);
/// assert!((p_3.get_coefficient(1) + 3.0).abs() < 0.00001);
/// assert!((p_3.get_coefficient(2) - 9.0/6.0).abs() < 0.00001);
/// assert!((p_3.get_coefficient(3) + 1.0/6.0).abs() < 0.00001);
/// }
///
pub fn laguerre<N: ComplexField + Copy + FromPrimitive>(
n: u32,
tol: N::RealField,
) -> Result<Polynomial<N>, String>
where
<N as ComplexField>::RealField: FromPrimitive + Copy,
{
let mut coefficients = Vec::with_capacity(n as usize + 1);
for k in 0..=n {
coefficients.push(
choose::<N>(n, k) / factorial::<N>(k) * if k % 2 == 0 { N::one() } else { -N::one() },
);
}
let mut poly: Polynomial<N> = coefficients.iter().copied().collect();
poly.set_tolerance(tol)?;
Ok(poly)
}
/// Get the zeros of the nth Laguerre polynomial
///
/// # Errors
/// Returns an error if `tol` or `poly_tol` are invalid
pub fn laguerre_zeros<N: ComplexField + Copy + FromPrimitive>(
n: u32,
tol: N::RealField,
poly_tol: N::RealField,
n_max: usize,
) -> Result<Vec<N>, String>
where
<N as ComplexField>::RealField: FromPrimitive + Copy,
{
if n == 0 {
return Ok(vec![]);
}
if n == 1 {
return Ok(vec![N::one()]);
}
let poly: Polynomial<N> = laguerre(n, poly_tol)?;
Ok(poly
.roots(tol, n_max)?
.iter()
.map(|c| {
if c.re.abs() < tol {
N::zero()
} else {
N::from_real(c.re)
}
})
.collect())
}
/// Get the nth chebyshev polynomial.
///
/// Gets the nth chebyshev polynomial over a specified field. This is
/// done using the recursive formula and is properly normalized.
///
/// # Errors
/// Returns an error on invalid tolerance
///
/// # Panics
/// Panics if a u8 can not be transformed into the generic type.
///
/// # Examples
/// ```
/// use bacon_sci::special::chebyshev;
/// fn example() {
/// let t_3 = chebyshev::<f64>(3, 1e-8).unwrap();
/// assert_eq!(t_3.order(), 3);
/// assert!(t_3.get_coefficient(0).abs() < 0.00001);
/// assert!((t_3.get_coefficient(1) + 3.0).abs() < 0.00001);
/// assert!(t_3.get_coefficient(2).abs() < 0.00001);
/// assert!((t_3.get_coefficient(3) - 4.0).abs() < 0.00001);
/// }
///
pub fn chebyshev<N: ComplexField + FromPrimitive + Copy>(
n: u32,
tol: N::RealField,
) -> Result<Polynomial<N>, String>
where
<N as ComplexField>::RealField: FromPrimitive + Copy,
{
if n == 0 {
let mut poly = polynomial![N::one()];
poly.set_tolerance(tol)?;
return Ok(poly);
}
if n == 1 {
let mut poly = polynomial![N::one(), N::zero()];
poly.set_tolerance(tol)?;
return Ok(poly);
}
let half = chebyshev(n / 2, tol)?;
if n % 2 == 0 {
Ok(&half * &half * N::from_u8(2).unwrap() - polynomial![N::one()])
} else {
let other_half = chebyshev(n / 2 + 1, tol)?;
Ok(&half * &other_half * N::from_u8(2).unwrap() - polynomial![N::one(), N::zero()])
}
}
/// Get the nth chebyshev polynomial of the second kind.
///
/// Gets the nth chebyshev polynomial of the second kind over a specified field. This is
/// done using the recursive formula and is properly normalized.
///
/// # Errors
/// Returns an error on invalid tolerance
///
/// # Panics
/// Panics if a u8 can not be transformed into the generic type.
///
/// # Examples
/// ```
/// use bacon_sci::special::chebyshev_second;
/// fn example() {
/// let u_3 = chebyshev_second::<f64>(3, 1e-8).unwrap();
/// assert_eq!(u_3.order(), 3);
/// assert!(u_3.get_coefficient(0).abs() < 0.00001);
/// assert!((u_3.get_coefficient(1) + 4.0).abs() < 0.00001);
/// assert!(u_3.get_coefficient(2).abs() < 0.00001);
/// assert!((u_3.get_coefficient(3) - 8.0).abs() < 0.00001);
/// }
///
pub fn chebyshev_second<N: ComplexField + FromPrimitive + Copy>(
n: u32,
tol: N::RealField,
) -> Result<Polynomial<N>, String>
where
<N as ComplexField>::RealField: FromPrimitive + Copy,
{
if n == 0 {
let mut poly = polynomial![N::one()];
poly.set_tolerance(tol)?;
return Ok(poly);
}
if n == 1 {
let mut poly = polynomial![N::from_u8(2).unwrap(), N::zero()];
poly.set_tolerance(tol)?;
return Ok(poly);
}
let mut t_0 = polynomial![N::one()];
t_0.set_tolerance(tol)?;
let mut t_1 = polynomial![N::from_u8(2).unwrap(), N::zero()];
t_1.set_tolerance(tol)?;
let double = t_1.clone();
for _ in 1..n {
let next = &double * &t_1 - &t_0;
t_0 = t_1;
t_1 = next;
}
Ok(t_1)
}