1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
/* This file is part of bacon.
* Copyright (c) Wyatt Campbell.
*
* See repository LICENSE for information.
*/
use nalgebra::{ComplexField, Const, DimMin, RealField, SMatrix, SVector};
use num_traits::{FromPrimitive, Zero};
mod polynomial;
pub use polynomial::*;
/// Use the bisection method to solve for a zero of an equation.
///
/// This function takes an interval and uses a binary search to find
/// where in that interval a function has a root. The signs of the function
/// at each end of the interval must be different
///
/// # Returns
/// Ok(root) when a root has been found, Err on failure
///
/// # Params
/// `(left, right)` The starting interval. f(left) * f(right) > 0.0
///
/// `f` The function to find the root for
///
/// `tol` The tolerance of the relative error between iterations.
///
/// `n_max` The maximum number of iterations to use.
///
/// # Examples
/// ```
/// use bacon_sci::roots::bisection;
///
/// fn cubic(x: f64) -> f64 {
/// x*x*x
/// }
/// //...
/// fn example() {
/// let solution = bisection((-1.0, 1.0), cubic, 0.001, 1000).unwrap();
/// }
/// ```
pub fn bisection<N, F>(
(mut left, mut right): (N, N),
mut f: F,
tol: N,
n_max: usize,
) -> Result<N, String>
where
N: RealField + FromPrimitive + Copy,
F: FnMut(N) -> N,
{
if left >= right {
return Err("Bisection: requirement: right > left".to_owned());
}
let mut n = 1;
let mut f_a = f(left);
if (f_a * f(right)).is_sign_positive() {
return Err("Bisection: requirement: Signs must be different".to_owned());
}
let half = N::from_f64(0.5).unwrap();
let mut half_interval = (left - right) * half;
let mut middle = left + half_interval;
if middle.abs() <= tol {
return Ok(middle);
}
while n <= n_max {
let f_p = f(middle);
if (f_p * f_a).is_sign_positive() {
left = middle;
f_a = f_p;
} else {
right = middle;
}
half_interval = (right - left) * half;
let middle_new = left + half_interval;
if (middle - middle_new).abs() / middle.abs() < tol || middle_new.abs() < tol {
return Ok(middle_new);
}
middle = middle_new;
n += 1;
}
Err("Bisection: Maximum iterations exceeded".to_owned())
}
/// Use steffenson's method to find a fixed point
///
/// Use steffenson's method to find a value x so that f(x) = x, given
/// a starting point.
///
/// # Returns
/// `Ok(x)` so that `f(x) - x < tol` on success, `Err` on failure
///
/// # Params
/// `initial` inital guess for the fixed point
///
/// `f` Function to find the fixed point of
///
/// `tol` Tolerance from 0 to try and achieve
///
/// `n_max` maximum number of iterations
///
/// # Examples
/// ```
/// use bacon_sci::roots::steffensen;
/// fn cosine(x: f64) -> f64 {
/// x.cos()
/// }
/// //...
/// fn example() -> Result<(), String> {
/// let solution = steffensen(0.5f64, cosine, 0.0001, 1000)?;
/// Ok(())
/// }
pub fn steffensen<N>(mut initial: N, f: fn(N) -> N, tol: N, n_max: usize) -> Result<N, String>
where
N: RealField + FromPrimitive + Copy,
{
let mut n = 0;
while n < n_max {
let guess = f(initial);
let new_guess = f(guess);
let diff = initial
- (guess - initial).powi(2) / (new_guess - N::from_f64(2.0).unwrap() * guess + initial);
if (diff - initial).abs() <= tol {
return Ok(diff);
}
initial = diff;
n += 1;
}
Err("Steffensen: Maximum number of iterations exceeded".to_owned())
}
/// Use Newton's method to find a root of a vector function.
///
/// Using a vector function and its derivative, find a root based on an initial guess
/// using Newton's method.
///
/// # Returns
/// `Ok(vec)` on success, where `vec` is a vector input for which the function is
/// zero. `Err` on failure.
///
/// # Params
/// `initial` Initial guess of the root. Should be near actual root. Slice since this
/// function finds roots of vector functions.
///
/// `f` Vector function for which to find the root
///
/// `f_deriv` Derivative of `f`
///
/// `tol` tolerance for error between iterations of Newton's method
///
/// `n_max` Maximum number of iterations
///
/// # Examples
/// ```
/// use nalgebra::{SVector, SMatrix};
/// use bacon_sci::roots::newton;
/// fn cubic(x: &[f64]) -> SVector<f64, 1> {
/// SVector::<f64, 1>::from_iterator(x.iter().map(|x| x.powi(3)))
/// }
///
/// fn cubic_deriv(x: &[f64]) -> SMatrix<f64, 1, 1> {
/// SMatrix::<f64, 1, 1>::from_iterator(x.iter().map(|x| 3.0*x.powi(2)))
/// }
/// //...
/// fn example() {
/// let solution = newton(&[0.1], cubic, cubic_deriv, 0.001, 1000).unwrap();
/// }
/// ```
pub fn newton<N, F, G, const S: usize>(
initial: &[N],
mut f: F,
mut jac: G,
tol: <N as ComplexField>::RealField,
n_max: usize,
) -> Result<SVector<N, S>, String>
where
N: ComplexField + FromPrimitive + Copy,
<N as ComplexField>::RealField: FromPrimitive + Copy,
F: FnMut(&[N]) -> SVector<N, S>,
G: FnMut(&[N]) -> SMatrix<N, S, S>,
Const<S>: DimMin<Const<S>, Output = Const<S>>,
{
let mut guess = SVector::<N, S>::from_column_slice(initial);
let mut norm = guess.dot(&guess).sqrt().abs();
let mut n = 0;
if norm <= tol {
return Ok(guess);
}
while n < n_max {
let f_val = -f(guess.as_slice());
let f_deriv_val = jac(guess.as_slice());
let lu = f_deriv_val.lu();
match lu.solve(&f_val) {
None => return Err("newton: failed to solve linear equation".to_owned()),
Some(adjustment) => {
let new_guess = guess + adjustment;
let new_norm = new_guess.dot(&new_guess).sqrt().abs();
if ((norm - new_norm) / norm).abs() <= tol || new_norm <= tol {
return Ok(new_guess);
}
norm = new_norm;
guess = new_guess;
n += 1;
}
}
}
Err("Newton: Maximum iterations exceeded".to_owned())
}
fn jac_finite_diff<N, F, const S: usize>(
mut f: F,
x: &mut SVector<N, S>,
h: <N as ComplexField>::RealField,
) -> SMatrix<N, S, S>
where
N: ComplexField + FromPrimitive + Copy,
<N as ComplexField>::RealField: FromPrimitive + Copy,
F: FnMut(&[N]) -> SVector<N, S>,
{
let mut mat = SMatrix::<N, S, S>::zero();
let h = N::from_real(h);
let denom = N::one() / (N::from_i32(2).unwrap() * h);
for col in 0..mat.row(0).len() {
x[col] += h;
let above = f(x.as_slice());
x[col] -= h;
x[col] -= h;
let below = f(x.as_slice());
x[col] += h;
let jac_col = (above + below) * denom;
for row in 0..mat.column(0).len() {
mat[(row, col)] = jac_col[row];
}
}
mat
}
/// Use secant method to find a root of a vector function.
///
/// Using a vector function and its derivative, find a root based on an initial guess
/// and finite element differences using Broyden's method.
///
/// # Returns
/// `Ok(vec)` on success, where `vec` is a vector input for which the function is
/// zero. `Err` on failure.
///
/// # Params
/// `initial` Initial guesses of the root. Should be near actual root. Slice since this
/// function finds roots of vector functions.
///
/// `f` Vector function for which to find the root
///
/// `tol` tolerance for error between iterations of Newton's method
///
/// `n_max` Maximum number of iterations
///
/// # Examples
/// ```
/// use nalgebra::SVector;
/// use bacon_sci::roots::secant;
/// fn cubic(x: &[f64]) -> SVector<f64, 1> {
/// SVector::<f64, 1>::from_iterator(x.iter().map(|x| x.powi(3)))
/// }
/// //...
/// fn example() {
/// let solution = secant(&[0.1], cubic, 0.1, 0.001, 1000).unwrap();
/// }
/// ```
pub fn secant<N, F, const S: usize>(
initial: &[N],
mut func: F,
h: <N as ComplexField>::RealField,
tol: <N as ComplexField>::RealField,
n_max: usize,
) -> Result<SVector<N, S>, String>
where
N: ComplexField + FromPrimitive + Copy,
<N as ComplexField>::RealField: FromPrimitive + Copy,
F: FnMut(&[N]) -> SVector<N, S>,
Const<S>: DimMin<Const<S>, Output = Const<S>>,
{
let mut n = 2;
let mut guess = SVector::<N, S>::from_column_slice(initial);
let mut func_eval = func(guess.as_slice());
let jac = jac_finite_diff(&mut func, &mut guess, h);
let lu = jac.lu();
let try_inv = lu.try_inverse();
let mut jac_inv = if let Some(inv) = try_inv {
inv
} else {
return Err("Secant: Can not inverse finite element difference jacobian".to_owned());
};
let mut shift = -jac_inv * func_eval;
guess += &shift;
while n < n_max {
let func_eval_last = func_eval;
func_eval = func(guess.as_slice());
let diff = func_eval - func_eval_last;
let adjustment = -jac_inv * diff;
let s_transpose = shift.transpose();
let p = (-s_transpose * adjustment)[(0, 0)];
let u = s_transpose * jac_inv;
jac_inv += (shift + adjustment) * u / p;
shift = -&jac_inv * func_eval;
guess += &shift;
if shift.norm().abs() <= tol {
return Ok(guess);
}
n += 1;
}
Err("Secant: Maximum iterations exceeded".to_owned())
}
/// Use Brent's method to find the root of a function
///
/// The initial guesses must bracket the root. That is, the function evaluations of
/// the initial guesses must differ in sign.
///
/// # Examples
/// ```
/// use bacon_sci::roots::brent;
/// fn cubic(x: f64) -> f64 {
/// x.powi(3)
/// }
/// //...
/// fn example() {
/// let solution = brent((0.1, -0.1), cubic, 1e-5).unwrap();
/// }
/// ```
pub fn brent<N, F>(initial: (N, N), mut f: F, tol: N) -> Result<N, String>
where
N: RealField + FromPrimitive + Copy,
F: FnMut(N) -> N,
{
if !tol.is_sign_positive() {
return Err("brent: tolerance must be positive".to_owned());
}
let mut left = initial.0;
let mut right = initial.1;
let mut f_left = f(left);
let mut f_right = f(right);
// Make a the maximum
if f_left.abs() < f_right.abs() {
std::mem::swap(&mut left, &mut right);
std::mem::swap(&mut f_left, &mut f_right);
}
if !(f_left * f_right).is_sign_negative() {
return Err("brent: initial guesses do not bracket root".to_owned());
}
let two = N::from_i32(2).unwrap();
let three = N::from_i32(3).unwrap();
let four = N::from_i32(4).unwrap();
let mut c = left;
let mut f_c = f_left;
let mut s = right - f_right * (right - left) / (f_right - f_left);
let mut f_s = f(s);
let mut mflag = true;
let mut d = c;
while !(f_right.abs() < tol || f_s.abs() < tol || (left - right).abs() < tol) {
if (f_left - f_c).abs() < tol && (f_right - f_c).abs() < tol {
s = (left * f_right * f_c) / ((f_left - f_right) * (f_left - f_c))
+ (right * f_left * f_c) / ((f_right - f_left) * (f_right - f_c))
+ (c * f_left * f_right) / ((f_c - f_left) * (f_c - f_right));
} else {
s = right - f_right * (right - left) / (f_right - f_left);
}
if !(s >= (three * left + right) / four && s <= right)
|| (mflag && (s - right).abs() >= (right - c) / two)
|| (!mflag && (s - right).abs() >= (c - d).abs() / two)
|| (mflag && (right - c).abs() < tol)
|| (!mflag && (c - d).abs() < tol)
{
s = (left + right) / two;
mflag = true;
} else {
mflag = false;
}
f_s = f(s);
d = c;
c = right;
f_c = f_right;
if (f_left * f_s).is_sign_negative() {
right = s;
f_right = f_s;
} else {
left = s;
f_left = f_s;
}
if f_left.abs() < f_right.abs() {
std::mem::swap(&mut left, &mut right);
std::mem::swap(&mut f_left, &mut f_right);
}
}
if f_s.abs() < tol {
Ok(s)
} else {
Ok(right)
}
}
/// Find the root of an equation using the ITP method.
///
/// The initial guess must bracket the root, that is the
/// function evaluations must differ in sign between the
/// two initial guesses. k_1 is a parameter in (0, infty).
/// k_2 is a paramater in (1, 1 + golden_ratio). n_0 is a parameter
/// in [0, infty). This method gives the worst case performance of the
/// bisection method (which has the best worst case performance) with
/// better average convergance.
///
/// # Examples
/// ```
/// use bacon_sci::roots::itp;
/// fn cubic(x: f64) -> f64 {
/// x.powi(3)
/// }
/// //...
/// fn example() {
/// let solution = itp((0.1, -0.1), cubic, 0.1, 2.0, 0.99, 1e-5).unwrap();
/// }
/// ```
pub fn itp<N, F>(initial: (N, N), mut f: F, k_1: N, k_2: N, n_0: N, tol: N) -> Result<N, String>
where
N: RealField + FromPrimitive + Copy,
F: FnMut(N) -> N,
{
if !tol.is_sign_positive() {
return Err("itp: tolerance must be positive".to_owned());
}
if !k_1.is_sign_positive() {
return Err("itp: k_1 must be positive".to_owned());
}
if k_2 <= N::one() || k_2 >= (N::one() + N::from_f64(0.5 * (1.0 + 5.0_f64.sqrt())).unwrap()) {
return Err("itp: k_2 must be in (1, 1 + golden_ratio)".to_owned());
}
let mut left = initial.0;
let mut right = initial.1;
let mut f_left = f(left);
let mut f_right = f(right);
if !(f_left * f_right).is_sign_negative() {
return Err("itp: initial guesses must bracket root".to_owned());
}
if f_left.is_sign_positive() {
std::mem::swap(&mut left, &mut right);
std::mem::swap(&mut f_left, &mut f_right);
}
let two = N::from_i32(2).unwrap();
let n_half = ((right - left).abs() / (two * tol)).log2().ceil();
let n_max = n_half + n_0;
let mut j = 0;
while (right - left).abs() > two * tol {
let x_half = (left + right) / two;
let r = tol * two.powf(n_max + n_0 - N::from_i32(j).unwrap()) - (right - left) / two;
let x_f = (f_right * left - f_left * right) / (f_right - f_left);
let sigma = (x_half - x_f) / (x_half - x_f).abs();
let delta = k_1 * (right - left).powf(k_2);
let x_t = if delta <= (x_half - x_f).abs() {
x_f + sigma * delta
} else {
x_half
};
let x_itp = if (x_t - x_half).abs() <= r {
x_t
} else {
x_half - sigma * r
};
let f_itp = f(x_itp);
if f_itp.is_sign_positive() {
right = x_itp;
f_right = f_itp;
} else if f_itp.is_sign_negative() {
left = x_itp;
f_left = f_itp;
} else {
left = x_itp;
right = x_itp;
}
j += 1;
}
Ok((left + right) / two)
}