use super::{IVPSolver, IVPStatus};
use nalgebra::{ComplexField, RealField, SVector};
use num_traits::{FromPrimitive, Zero};
use std::collections::VecDeque;
pub trait AdamsSolver<N, const S: usize, const O: usize>: Sized
where
N: ComplexField,
{
fn predictor_coefficients() -> SVector<N::RealField, O>;
fn corrector_coefficients() -> SVector<N::RealField, O>;
fn error_coefficient() -> N::RealField;
fn solve_ivp<T, F>(self, f: F, params: &mut T) -> super::Path<N, N::RealField, S>
where
T: Clone,
F: FnMut(N::RealField, &[N], &mut T) -> Result<SVector<N, S>, String>;
fn with_tolerance(self, tol: N::RealField) -> Result<Self, String>;
fn with_dt_max(self, max: N::RealField) -> Result<Self, String>;
fn with_dt_min(self, min: N::RealField) -> Result<Self, String>;
fn with_start(self, t_initial: N::RealField) -> Result<Self, String>;
fn with_end(self, t_final: N::RealField) -> Result<Self, String>;
fn with_initial_conditions(self, start: &[N]) -> Result<Self, String>;
fn build(self) -> Self;
}
#[derive(Debug, Clone)]
pub struct AdamsInfo<N, const S: usize, const O: usize>
where
N: ComplexField + FromPrimitive + Copy,
<N as ComplexField>::RealField: FromPrimitive + Copy,
{
dt: Option<N::RealField>,
time: Option<N::RealField>,
end: Option<N::RealField>,
state: Option<SVector<N, S>>,
dt_max: Option<N::RealField>,
dt_min: Option<N::RealField>,
tolerance: Option<N::RealField>,
predictor_coefficients: SVector<N, O>,
corrector_coefficients: SVector<N, O>,
error_coefficient: N::RealField,
memory: VecDeque<SVector<N, S>>,
states: VecDeque<(N::RealField, SVector<N, S>)>,
nflag: bool,
last: bool,
}
impl<N, const S: usize, const O: usize> AdamsInfo<N, S, O>
where
N: ComplexField + FromPrimitive + Copy,
<N as ComplexField>::RealField: FromPrimitive + Copy,
{
pub fn new() -> Self {
AdamsInfo {
dt: None,
time: None,
end: None,
state: None,
dt_max: None,
dt_min: None,
tolerance: None,
predictor_coefficients: SVector::<N, O>::zero(),
corrector_coefficients: SVector::<N, O>::zero(),
error_coefficient: N::RealField::zero(),
memory: VecDeque::new(),
states: VecDeque::new(),
nflag: false,
last: false,
}
}
}
#[allow(clippy::too_many_arguments)]
fn rk4<N, T, F, const S: usize>(
time: N::RealField,
dt: N::RealField,
initial: &[N],
states: &mut VecDeque<(N::RealField, SVector<N, S>)>,
derivs: &mut VecDeque<SVector<N, S>>,
mut f: F,
params: &mut T,
num: usize,
) -> Result<(), String>
where
N: ComplexField + FromPrimitive + Copy,
<N as ComplexField>::RealField: FromPrimitive + Copy,
T: Clone,
F: FnMut(N::RealField, &[N], &mut T) -> Result<SVector<N, S>, String>,
{
let mut state: SVector<N, S> = SVector::from_column_slice(initial);
let mut time = time;
for i in 0..num {
let k1 = f(time, state.as_slice(), &mut params.clone())? * N::from_real(dt);
let intermediate = state + k1 * N::from_f64(0.5).unwrap();
let k2 = f(
time + N::RealField::from_f64(0.5).unwrap() * dt,
intermediate.as_slice(),
&mut params.clone(),
)? * N::from_real(dt);
let intermediate = state + k2 * N::from_f64(0.5).unwrap();
let k3 = f(
time + N::RealField::from_f64(0.5).unwrap() * dt,
intermediate.as_slice(),
&mut params.clone(),
)? * N::from_real(dt);
let intermediate = state + k3;
let k4 = f(time + dt, intermediate.as_slice(), &mut params.clone())? * N::from_real(dt);
if i != 0 {
derivs.push_back(f(time, state.as_slice(), params)?);
states.push_back((time, state));
}
state += (k1 + k2 * N::from_f64(2.0).unwrap() + k3 * N::from_f64(2.0).unwrap() + k4)
* N::from_f64(1.0 / 6.0).unwrap();
time += dt;
}
derivs.push_back(f(time, state.as_slice(), params)?);
states.push_back((time, state));
Ok(())
}
impl<N, const S: usize, const O: usize> Default for AdamsInfo<N, S, O>
where
N: ComplexField + FromPrimitive + Copy,
<N as ComplexField>::RealField: FromPrimitive + Copy,
{
fn default() -> Self {
Self::new()
}
}
impl<N, const S: usize, const O: usize> IVPSolver<N, S> for AdamsInfo<N, S, O>
where
N: ComplexField + FromPrimitive + Copy,
<N as ComplexField>::RealField: FromPrimitive + Copy,
{
fn step<T, F>(&mut self, mut f: F, params: &mut T) -> Result<IVPStatus<N, S>, String>
where
T: Clone,
F: FnMut(N::RealField, &[N], &mut T) -> Result<SVector<N, S>, String>,
{
if self.time.unwrap() >= self.end.unwrap() {
return Ok(IVPStatus::Done);
}
let mut output = vec![];
if self.time.unwrap() + self.dt.unwrap() >= self.end.unwrap() {
self.dt = Some(self.end.unwrap() - self.time.unwrap());
rk4(
self.time.unwrap(),
self.dt.unwrap(),
self.state.as_ref().unwrap().as_slice(),
&mut self.states,
&mut self.memory,
&mut f,
params,
1,
)?;
*self.time.get_or_insert(N::RealField::zero()) += self.dt.unwrap();
return Ok(IVPStatus::Ok(vec![(
self.time.unwrap(),
self.states.back().unwrap().1,
)]));
}
if self.memory.is_empty() {
rk4(
self.time.unwrap(),
self.dt.unwrap(),
self.state.as_ref().unwrap().as_slice(),
&mut self.states,
&mut self.memory,
&mut f,
params,
self.predictor_coefficients.len() - 1,
)?;
self.time = Some(
self.time.unwrap()
+ N::RealField::from_usize(self.predictor_coefficients.len() - 1).unwrap()
* self.dt.unwrap(),
);
self.state = Some(self.states.back().unwrap().1);
}
let tenth_real = N::RealField::from_f64(0.1).unwrap();
let two_real = N::RealField::from_i32(2).unwrap();
let four_real = N::RealField::from_i32(4).unwrap();
let wp = &self.state.as_ref().unwrap();
let wp =
SVector::<N, S>::from_iterator(wp.as_slice().iter().enumerate().map(|(ind, y)| {
let mut acc = *y;
let dt = N::from_real(self.dt.unwrap());
for (j, mem) in self.memory.iter().enumerate() {
acc += mem[ind]
* self.predictor_coefficients[self.predictor_coefficients.len() - j - 2]
* dt;
}
acc
}));
let implicit = f(
self.time.unwrap() + self.dt.unwrap(),
wp.as_slice(),
&mut params.clone(),
)?;
let wc = &self.state.as_ref().unwrap();
let wc =
SVector::<N, S>::from_iterator(wc.as_slice().iter().enumerate().map(|(ind, y)| {
let dt = N::from_real(self.dt.unwrap());
let mut acc = implicit[ind] * self.corrector_coefficients[0] * dt;
for (j, mem) in self.memory.iter().enumerate() {
acc += mem[ind]
* self.corrector_coefficients[self.corrector_coefficients.len() - j - 1]
* dt;
}
acc + *y
}));
let diff = wc - wp;
let error = self.error_coefficient / self.dt.unwrap() * diff.dot(&diff).sqrt().abs();
if error <= self.tolerance.unwrap() {
self.state = Some(wc);
self.time = Some(self.time.unwrap() + self.dt.unwrap());
if self.nflag {
for state in self.states.iter() {
output.push((state.0, state.1));
}
self.nflag = false;
}
output.push((self.time.unwrap(), *self.state.as_ref().unwrap()));
self.memory.push_back(implicit);
self.states
.push_back((self.time.unwrap(), *self.state.as_ref().unwrap()));
self.memory.pop_front();
self.states.pop_front();
if self.last {
return Ok(IVPStatus::Ok(output));
}
if error < tenth_real * self.tolerance.unwrap()
|| self.time.unwrap() > self.end.unwrap()
{
let q = (self.tolerance.unwrap() / (two_real * error)).powf(
N::RealField::from_f64(1.0 / self.predictor_coefficients.len() as f64).unwrap(),
);
if q > four_real {
self.dt = Some(self.dt.unwrap() * four_real);
} else {
self.dt = Some(self.dt.unwrap() * q);
}
if self.dt.unwrap() > self.dt_max.unwrap() {
self.dt = Some(self.dt_max.unwrap());
}
if self.time.unwrap()
+ N::RealField::from_usize(self.predictor_coefficients.len()).unwrap()
* self.dt.unwrap()
> self.end.unwrap()
{
self.dt = Some(
(self.end.unwrap() - self.time.unwrap())
/ N::RealField::from_usize(self.predictor_coefficients.len()).unwrap(),
);
self.last = true;
}
self.memory.clear();
self.states.clear();
}
return Ok(IVPStatus::Ok(output));
}
let q = (self.tolerance.unwrap() / (N::RealField::from_f64(2.0).unwrap() * error)).powf(
N::RealField::from_f64(1.0 / (self.predictor_coefficients.len() as f64)).unwrap(),
);
if q < tenth_real {
self.dt = Some(self.dt.unwrap() * tenth_real);
} else {
self.dt = Some(self.dt.unwrap() * q);
}
if self.dt.unwrap() < self.dt_min.unwrap() {
return Err("AdamsInfo step: minimum dt exceeded".to_owned());
}
self.memory.clear();
self.states.clear();
Ok(IVPStatus::Redo)
}
fn with_tolerance(mut self, tol: N::RealField) -> Result<Self, String> {
if !tol.is_sign_positive() {
return Err("AdamsInfo with_tolerance: tolerance must be postive".to_owned());
}
self.tolerance = Some(tol);
Ok(self)
}
fn with_dt_max(mut self, max: N::RealField) -> Result<Self, String> {
if !max.is_sign_positive() {
return Err("AdamsInfo with_dt_max: dt_max must be positive".to_owned());
}
if let Some(min) = self.dt_min {
if max <= min {
return Err("AdamsInfo with_dt_max: dt_max must be greater than dt_min".to_owned());
}
}
self.dt_max = Some(max);
self.dt = Some(max);
Ok(self)
}
fn with_dt_min(mut self, min: N::RealField) -> Result<Self, String> {
if !min.is_sign_positive() {
return Err("AdamsInfo with_dt_min: dt_min must be positive".to_owned());
}
if let Some(max) = self.dt_max {
if min >= max {
return Err("AdamsInfo with_dt_min: dt_min must be less than dt_max".to_owned());
}
}
self.dt_min = Some(min);
Ok(self)
}
fn with_start(mut self, t_initial: N::RealField) -> Result<Self, String> {
if let Some(end) = self.end {
if end <= t_initial {
return Err("AdamsInfo with_start: Start must be before end".to_owned());
}
}
self.time = Some(t_initial);
Ok(self)
}
fn with_end(mut self, t_final: N::RealField) -> Result<Self, String> {
if let Some(start) = self.time {
if t_final <= start {
return Err("AdamsInfo with_end: Start must be before end".to_owned());
}
}
self.end = Some(t_final);
Ok(self)
}
fn with_initial_conditions(mut self, start: &[N]) -> Result<Self, String> {
self.state = Some(SVector::<N, S>::from_column_slice(start));
Ok(self)
}
fn build(self) -> Self {
self
}
fn get_initial_conditions(&self) -> Option<SVector<N, S>> {
self.state.as_ref().copied()
}
fn get_time(&self) -> Option<N::RealField> {
self.time.as_ref().copied()
}
fn check_start(&self) -> Result<(), String> {
if self.time.is_none() {
Err("AdamsInfo check_start: No initial time".to_owned())
} else if self.end.is_none() {
Err("AdamsInfo check_start: No end time".to_owned())
} else if self.tolerance.is_none() {
Err("AdamsInfo check_start: No tolerance".to_owned())
} else if self.state.is_none() {
Err("AdamsInfo check_start: No initial conditions".to_owned())
} else if self.dt_max.is_none() {
Err("AdamsInfo check_start: No dt_max".to_owned())
} else if self.dt_min.is_none() {
Err("AdamsInfo check_start: No dt_min".to_owned())
} else {
Ok(())
}
}
}
#[derive(Debug, Clone)]
pub struct Adams<N, const S: usize>
where
N: ComplexField + FromPrimitive + Copy,
<N as ComplexField>::RealField: FromPrimitive + Copy,
{
info: AdamsInfo<N, S, 5>,
}
impl<N, const S: usize> Adams<N, S>
where
N: ComplexField + FromPrimitive + Copy,
<N as ComplexField>::RealField: FromPrimitive + Copy,
{
pub fn new() -> Self {
let mut info = AdamsInfo::new();
info.corrector_coefficients = SVector::<N, 5>::from_iterator(
Self::corrector_coefficients()
.iter()
.map(|&x| N::from_real(x)),
);
info.predictor_coefficients = SVector::<N, 5>::from_iterator(
Self::predictor_coefficients()
.iter()
.map(|&x| N::from_real(x)),
);
info.error_coefficient = Self::error_coefficient();
Adams { info }
}
}
impl<N, const S: usize> Default for Adams<N, S>
where
N: ComplexField + FromPrimitive + Copy,
<N as ComplexField>::RealField: FromPrimitive + Copy,
{
fn default() -> Self {
Self::new()
}
}
impl<N, const S: usize> AdamsSolver<N, S, 5> for Adams<N, S>
where
N: ComplexField + FromPrimitive + Copy,
<N as ComplexField>::RealField: FromPrimitive + Copy,
{
fn predictor_coefficients() -> SVector<N::RealField, 5> {
SVector::<N::RealField, 5>::from_column_slice(&[
N::RealField::from_f64(55.0 / 24.0).unwrap(),
N::RealField::from_f64(-59.0 / 24.0).unwrap(),
N::RealField::from_f64(37.0 / 24.0).unwrap(),
N::RealField::from_f64(-9.0 / 24.0).unwrap(),
N::RealField::zero(),
])
}
fn corrector_coefficients() -> SVector<N::RealField, 5> {
SVector::<N::RealField, 5>::from_column_slice(&[
N::RealField::from_f64(251.0 / 720.0).unwrap(),
N::RealField::from_f64(646.0 / 720.0).unwrap(),
N::RealField::from_f64(-264.0 / 720.0).unwrap(),
N::RealField::from_f64(106.0 / 720.0).unwrap(),
N::RealField::from_f64(-19.0 / 720.0).unwrap(),
])
}
fn error_coefficient() -> N::RealField {
N::RealField::from_f64(19.0 / 270.0).unwrap()
}
fn solve_ivp<
T: Clone,
F: FnMut(N::RealField, &[N], &mut T) -> Result<SVector<N, S>, String>,
>(
self,
f: F,
params: &mut T,
) -> super::Path<N, N::RealField, S> {
self.info.solve_ivp(f, params)
}
fn with_tolerance(mut self, tol: N::RealField) -> Result<Self, String> {
self.info = self.info.with_tolerance(tol)?;
Ok(self)
}
fn with_dt_max(mut self, max: N::RealField) -> Result<Self, String> {
self.info = self.info.with_dt_max(max)?;
Ok(self)
}
fn with_dt_min(mut self, min: N::RealField) -> Result<Self, String> {
self.info = self.info.with_dt_min(min)?;
Ok(self)
}
fn with_start(mut self, t_initial: N::RealField) -> Result<Self, String> {
self.info = self.info.with_start(t_initial)?;
Ok(self)
}
fn with_end(mut self, t_final: N::RealField) -> Result<Self, String> {
self.info = self.info.with_end(t_final)?;
Ok(self)
}
fn with_initial_conditions(mut self, start: &[N]) -> Result<Self, String> {
self.info = self.info.with_initial_conditions(start)?;
Ok(self)
}
fn build(mut self) -> Self {
self.info = self.info.build();
self
}
}
impl<N, const S: usize> From<Adams<N, S>> for AdamsInfo<N, S, 5>
where
N: ComplexField + FromPrimitive + Copy,
<N as ComplexField>::RealField: FromPrimitive + Copy,
{
fn from(adams: Adams<N, S>) -> AdamsInfo<N, S, 5> {
adams.info
}
}
#[derive(Debug, Clone)]
pub struct Adams2<N, const S: usize>
where
N: ComplexField + FromPrimitive + Copy,
<N as ComplexField>::RealField: FromPrimitive + Copy,
{
info: AdamsInfo<N, S, 3>,
}
impl<N, const S: usize> Adams2<N, S>
where
N: ComplexField + FromPrimitive + Copy,
<N as ComplexField>::RealField: FromPrimitive + Copy,
{
pub fn new() -> Self {
let mut info = AdamsInfo::new();
info.corrector_coefficients = SVector::<N, 3>::from_iterator(
Self::corrector_coefficients()
.iter()
.map(|&x| N::from_real(x)),
);
info.predictor_coefficients = SVector::<N, 3>::from_iterator(
Self::predictor_coefficients()
.iter()
.map(|&x| N::from_real(x)),
);
info.error_coefficient = Self::error_coefficient();
Adams2 { info }
}
}
impl<N, const S: usize> Default for Adams2<N, S>
where
N: ComplexField + FromPrimitive + Copy,
<N as ComplexField>::RealField: FromPrimitive + Copy,
{
fn default() -> Self {
Self::new()
}
}
impl<N, const S: usize> AdamsSolver<N, S, 3> for Adams2<N, S>
where
N: ComplexField + FromPrimitive + Copy,
<N as ComplexField>::RealField: FromPrimitive + Copy,
{
fn predictor_coefficients() -> SVector<N::RealField, 3> {
SVector::<N::RealField, 3>::from_column_slice(&[
N::RealField::from_f64(1.5).unwrap(),
N::RealField::from_f64(-0.5).unwrap(),
N::RealField::zero(),
])
}
fn corrector_coefficients() -> SVector<N::RealField, 3> {
SVector::<N::RealField, 3>::from_column_slice(&[
N::RealField::from_f64(5.0 / 12.0).unwrap(),
N::RealField::from_f64(2.0 / 3.0).unwrap(),
N::RealField::from_f64(-1.0 / 12.0).unwrap(),
])
}
fn error_coefficient() -> N::RealField {
N::RealField::from_f64(19.0 / 270.0).unwrap()
}
fn solve_ivp<
T: Clone,
F: FnMut(N::RealField, &[N], &mut T) -> Result<SVector<N, S>, String>,
>(
self,
f: F,
params: &mut T,
) -> super::Path<N, N::RealField, S> {
self.info.solve_ivp(f, params)
}
fn with_tolerance(mut self, tol: N::RealField) -> Result<Self, String> {
self.info = self.info.with_tolerance(tol)?;
Ok(self)
}
fn with_dt_max(mut self, max: N::RealField) -> Result<Self, String> {
self.info = self.info.with_dt_max(max)?;
Ok(self)
}
fn with_dt_min(mut self, min: N::RealField) -> Result<Self, String> {
self.info = self.info.with_dt_min(min)?;
Ok(self)
}
fn with_start(mut self, t_initial: N::RealField) -> Result<Self, String> {
self.info = self.info.with_start(t_initial)?;
Ok(self)
}
fn with_end(mut self, t_final: N::RealField) -> Result<Self, String> {
self.info = self.info.with_end(t_final)?;
Ok(self)
}
fn with_initial_conditions(mut self, start: &[N]) -> Result<Self, String> {
self.info = self.info.with_initial_conditions(start)?;
Ok(self)
}
fn build(mut self) -> Self {
self.info = self.info.build();
self
}
}
impl<N, const S: usize> From<Adams2<N, S>> for AdamsInfo<N, S, 3>
where
N: ComplexField + FromPrimitive + Copy,
<N as ComplexField>::RealField: FromPrimitive + Copy,
{
fn from(adams: Adams2<N, S>) -> AdamsInfo<N, S, 3> {
adams.info
}
}