1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
use crate::polynomial::Polynomial;
use nalgebra::{ComplexField, DMatrix, DVector, RealField, SVector};
use num_traits::{FromPrimitive, One, Zero};

/// Linear least-squares regression
pub fn linear_fit<N>(xs: &[N], ys: &[N]) -> Result<Polynomial<N>, String>
where
    N: ComplexField + FromPrimitive + Copy,
    <N as ComplexField>::RealField: FromPrimitive + Copy,
{
    if xs.len() != ys.len() {
        return Err("linear_fit: xs length does not match ys length".to_owned());
    }

    let mut sum_x = N::zero();
    let mut sum_y = N::zero();
    let mut sum_x_sq = N::zero();
    let mut sum_y_sq = N::zero();
    let mut sum_xy = N::zero();

    for (ind, x) in xs.iter().enumerate() {
        sum_x += *x;
        sum_y += ys[ind];
        sum_x_sq += x.powi(2);
        sum_y_sq += ys[ind].powi(2);
        sum_xy += ys[ind] * *x;
    }

    let m = N::from_usize(xs.len()).unwrap();
    let denom = m * sum_x_sq - sum_x.powi(2);
    let a = (m * sum_xy - sum_x * sum_y) / denom;
    let b = (sum_x_sq * sum_y - sum_xy * sum_x) / denom;

    Ok(polynomial![a, b])
}

// Compute the J matrix for LM using finite differences, 3 point formula
fn jac_finite_differences<N, F, const V: usize>(
    mut f: F,
    xs: &[N],
    params: &mut SVector<N, V>,
    mat: &mut DMatrix<N>,
    h: N::RealField,
) where
    N: ComplexField + FromPrimitive + Copy,
    F: FnMut(N, &SVector<N, V>) -> N,
    <N as ComplexField>::RealField: FromPrimitive + Copy,
{
    let h = N::from_real(h);
    let denom = N::one() / (N::from_i32(2).unwrap() * h);
    for row in 0..mat.column(0).len() {
        for col in 0..mat.row(0).len() {
            params[col] += h;
            let above = f(xs[row], &params);
            params[col] -= h;
            params[col] -= h;
            let below = f(xs[row], &params);
            mat[(row, col)] = denom * (above + below);
            params[col] += h;
        }
    }
}

// Compute the J matrix for LM using analytic formula
fn jac_analytic<N, F, const V: usize>(
    mut jac: F,
    xs: &[N],
    params: &mut SVector<N, V>,
    mat: &mut DMatrix<N>,
) where
    N: ComplexField + Copy,
    F: FnMut(N, &SVector<N, V>) -> SVector<N, V>,
{
    for row in 0..mat.column(0).len() {
        let deriv = jac(xs[row], &params);
        for col in 0..mat.row(0).len() {
            mat[(row, col)] = deriv[col];
        }
    }
}

#[derive(Debug, Clone)]
pub struct CurveFitParams<N: ComplexField> {
    pub damping: N::RealField,
    pub tolerance: N::RealField,
    pub h: N::RealField,
    pub damping_mult: N::RealField,
}

impl<N: ComplexField + FromPrimitive> Default for CurveFitParams<N> {
    fn default() -> Self {
        CurveFitParams {
            damping: N::from_f64(2.0).unwrap().real(),
            tolerance: N::from_f64(1e-5).unwrap().real(),
            h: N::from_f64(0.1).unwrap().real(),
            damping_mult: N::from_f64(1.5).unwrap().real(),
        }
    }
}

/// Fit a curve using the Levenberg-Marquardt algorithm.
///
/// Uses finite differences of h to calculate the jacobian. If jacobian
/// can be found analytically, then use curve_fit_jac. Keeps iterating until
/// the differences between the sum of the square residuals of two iterations
/// is under tol.
pub fn curve_fit<N, F, const V: usize>(
    mut f: F,
    xs: &[N],
    ys: &[N],
    initial: &[N],
    params: &CurveFitParams<N>,
) -> Result<SVector<N, V>, String>
where
    N: ComplexField + FromPrimitive + Copy,
    <N as ComplexField>::RealField: FromPrimitive + Copy,
    F: FnMut(N, &SVector<N, V>) -> N,
{
    let tol = params.tolerance;
    let mut damping = params.damping;
    let h = params.h;
    let damping_mult = params.damping_mult;

    if !tol.is_sign_positive() {
        return Err("curve_fit: tol must be positive".to_owned());
    }

    if !h.is_sign_positive() {
        return Err("curve_fit: h must be positive".to_owned());
    }

    if !damping.is_sign_positive() {
        return Err("curve_fit: damping must be positive".to_owned());
    }

    if xs.len() != ys.len() {
        return Err("curve_fit: xs length must match ys length".to_owned());
    }

    let mut params = SVector::<N, V>::from_column_slice(initial);
    let ys = DVector::<N>::from_column_slice(ys);
    let mut jac: DMatrix<N> = DMatrix::identity(xs.len(), params.len());
    jac_finite_differences(&mut f, xs, &mut params, &mut jac, h);
    let mut jac_transpose = jac.transpose();

    // Get the initial sum of square residuals
    let mut resid = Vec::with_capacity(xs.len());
    for (ind, &x) in xs.iter().enumerate() {
        resid.push(ys[ind] - f(x, &params));
    }
    let sum_sq_initial: N::RealField = resid
        .iter()
        .map(|&r| r.modulus_squared())
        .fold(N::RealField::zero(), |acc, r| acc + r);

    // Get initial factor
    let mut sum_sq = sum_sq_initial + N::RealField::one();
    let mut damping_tmp = damping / damping_mult;
    let mut j = 0;
    let mut evaluation: DVector<N> =
        DVector::from_iterator(xs.len(), xs.iter().map(|&x| f(x, &params)));
    while sum_sq > sum_sq_initial && j < 1000 {
        damping_tmp *= damping_mult;
        let diff = &ys - &evaluation;
        let mut b = &jac_transpose * &diff;
        // Always square
        let mut multiplied = &jac_transpose * &jac;
        for i in 0..multiplied.row(0).len() {
            multiplied[(i, i)] *= N::one() + N::from_real(damping_tmp);
        }
        let lu = multiplied.clone().lu();
        let solved = lu.solve_mut(&mut b);
        if !solved {
            return Err("curve_fit: unable to solve linear equation".to_owned());
        }
        params += &b;
        evaluation = DVector::from_iterator(xs.len(), xs.iter().map(|&x| f(x, &params)));
        let diff = &ys - &evaluation;
        sum_sq = diff
            .iter()
            .map(|&r| r.modulus_squared())
            .fold(N::RealField::zero(), |acc, r| acc + r);
        j += 1;
        jac_finite_differences(&mut f, xs, &mut params, &mut jac, h);
        jac_transpose = jac.transpose();
    }
    if j != 1000 {
        damping = damping_tmp;
    }

    let mut last_sum_sq = sum_sq;
    sum_sq += N::from_i32(2).unwrap().real() * tol;
    while (last_sum_sq - sum_sq).abs() > tol {
        last_sum_sq = sum_sq;
        // Get right side of iteration equation
        let diff = &ys - &evaluation;
        let mut b = &jac_transpose * &diff;
        let mut b_div = b.clone();
        // Get left side of equation
        let mut multiplied = &jac_transpose * &jac;
        let mut multiplied_div = multiplied.clone();
        for i in 0..multiplied.row(0).len() {
            multiplied[(i, i)] *= N::one() + N::from_real(damping);
        }
        // Solve equation with LU w/ partial pivoting first
        let lu = multiplied.clone().lu();
        let solved = lu.solve_mut(&mut b);
        if !solved {
            return Err("curve_fit: unable to solve linear equation".to_owned());
        }
        let new_params = &params + &b;

        // Now solve for damping / damping_mult
        for i in 0..multiplied_div.row(0).len() {
            multiplied_div[(i, i)] *= N::one() + N::from_real(damping / damping_mult);
        }
        let lu = multiplied_div.clone().lu();
        let solved = lu.solve_mut(&mut b_div);
        if !solved {
            let lu = multiplied_div.clone().full_piv_lu();
            let solved = lu.solve_mut(&mut b_div);
            if !solved {
                let qr = multiplied_div.qr();
                let solved = qr.solve_mut(&mut b_div);
                if !solved {
                    return Err("curve_fit: unable to solve linear equation".to_owned());
                }
            }
        }
        let new_params_div = &params + &b_div;

        // get residuals for each of the new solutions
        evaluation = DVector::from_iterator(xs.len(), xs.iter().map(|&x| f(x, &new_params)));
        let evaluation_div =
            DVector::from_iterator(xs.len(), xs.iter().map(|&x| f(x, &new_params_div)));
        let diff = &ys - &evaluation;
        let diff_div = &ys - &evaluation_div;

        let resid: N::RealField = diff
            .iter()
            .map(|&r| r.modulus_squared())
            .fold(N::RealField::zero(), |acc, r| acc + r);
        let resid_div: N::RealField = diff_div
            .iter()
            .map(|&r| r.modulus_squared())
            .fold(N::RealField::zero(), |acc, r| acc + r);

        if resid_div < resid {
            damping /= damping_mult;
            evaluation = evaluation_div;
            params = new_params_div;
            sum_sq = resid_div;
        } else {
            params = new_params;
            sum_sq = resid;
        }

        jac_finite_differences(&mut f, xs, &mut params, &mut jac, h);
        jac_transpose = jac.transpose();
    }

    Ok(params)
}

/// Fit a curve using the Levenberg-Marquardt algorithm.
///
/// Uses an analytic jacobian.Keeps iterating until
/// the differences between the sum of the square residuals of two iterations
/// is under tol. Jacobian should be a function that returns a column vector
/// where jacobian[i] is the partial derivative of f with respect to param[i].
pub fn curve_fit_jac<N, F, G, const V: usize>(
    mut f: F,
    xs: &[N],
    ys: &[N],
    initial: &[N],
    mut jacobian: G,
    params: &CurveFitParams<N>,
) -> Result<SVector<N, V>, String>
where
    N: ComplexField + FromPrimitive + Copy,
    <N as ComplexField>::RealField: FromPrimitive + Copy,
    F: FnMut(N, &SVector<N, V>) -> N,
    G: FnMut(N, &SVector<N, V>) -> SVector<N, V>,
{
    let tol = params.tolerance;
    let mut damping = params.damping;
    let damping_mult = params.damping_mult;

    if !tol.is_sign_positive() {
        return Err("curve_fit_jac: tol must be positive".to_owned());
    }

    if !damping.is_sign_positive() {
        return Err("curve_fit_jac: damping must be positive".to_owned());
    }

    if xs.len() != ys.len() {
        return Err("curve_fit_jac: xs length must match ys length".to_owned());
    }

    let mut params = SVector::<N, V>::from_column_slice(initial);
    let ys = DVector::<N>::from_column_slice(ys);
    let mut jac: DMatrix<N> = DMatrix::identity(xs.len(), params.len());
    jac_analytic(&mut jacobian, xs, &mut params, &mut jac);
    let mut jac_transpose = jac.transpose();

    // Get the initial sum of square residuals
    let mut resid = Vec::with_capacity(xs.len());
    for (ind, &x) in xs.iter().enumerate() {
        resid.push(ys[ind] - f(x, &params));
    }
    let sum_sq_initial: N::RealField = resid
        .iter()
        .map(|&r| r.modulus_squared())
        .fold(N::RealField::zero(), |acc, r| acc + r);

    // Get initial factor
    let mut sum_sq = sum_sq_initial + N::RealField::one();
    let mut damping_tmp = damping / damping_mult;
    let mut j = 0;
    let mut evaluation: DVector<N> =
        DVector::from_iterator(xs.len(), xs.iter().map(|&x| f(x, &params)));
    while sum_sq > sum_sq_initial && j < 1000 {
        damping_tmp *= damping_mult;
        let diff = &ys - &evaluation;
        let mut b = &jac_transpose * &diff;
        // Always square
        let mut multiplied = &jac_transpose * &jac;
        for i in 0..multiplied.row(0).len() {
            multiplied[(i, i)] *= N::one() + N::from_real(damping_tmp);
        }
        let lu = multiplied.clone().lu();
        let solved = lu.solve_mut(&mut b);
        if !solved {
            let lu = multiplied.clone().full_piv_lu();
            let solved = lu.solve_mut(&mut b);
            if !solved {
                let qr = multiplied.qr();
                let solved = qr.solve_mut(&mut b);
                if !solved {
                    return Err("curve_fit_jac: unable to solve linear equation".to_owned());
                }
            }
        }
        params += &b;
        evaluation = DVector::from_iterator(xs.len(), xs.iter().map(|&x| f(x, &params)));
        let diff = &ys - &evaluation;
        sum_sq = diff
            .iter()
            .map(|&r| r.modulus_squared())
            .fold(N::RealField::zero(), |acc, r| acc + r);
        j += 1;
        jac_analytic(&mut jacobian, xs, &mut params, &mut jac);
        jac_transpose = jac.transpose();
    }
    if j != 1000 {
        damping = damping_tmp;
    }

    let mut last_sum_sq = sum_sq;
    sum_sq += N::from_i32(2).unwrap().real() * tol;
    while (last_sum_sq - sum_sq).abs() > tol {
        last_sum_sq = sum_sq;
        // Get right side of iteration equation
        let diff = &ys - &evaluation;
        let mut b = &jac_transpose * &diff;
        let mut b_div = b.clone();
        // Get left side of equation
        let mut multiplied = &jac_transpose * &jac;
        let mut multiplied_div = multiplied.clone();
        for i in 0..multiplied.row(0).len() {
            multiplied[(i, i)] *= N::one() + N::from_real(damping);
        }
        // Solve equation with LU w/ partial pivoting first
        // Then try LU w/ Full pivoting, QR
        let lu = multiplied.clone().lu();
        let solved = lu.solve_mut(&mut b);
        if !solved {
            let lu = multiplied.clone().full_piv_lu();
            let solved = lu.solve_mut(&mut b);
            if !solved {
                let qr = multiplied.qr();
                let solved = qr.solve_mut(&mut b);
                if !solved {
                    return Err("curve_fit_jac: unable to solve linear equation".to_owned());
                }
            }
        }
        let new_params = &params + &b;

        // Now solve for damping / damping_mult
        for i in 0..multiplied_div.row(0).len() {
            multiplied_div[(i, i)] *= N::one() + N::from_real(damping / damping_mult);
        }
        let lu = multiplied_div.clone().lu();
        let solved = lu.solve_mut(&mut b_div);
        if !solved {
            let lu = multiplied_div.clone().full_piv_lu();
            let solved = lu.solve_mut(&mut b_div);
            if !solved {
                let qr = multiplied_div.qr();
                let solved = qr.solve_mut(&mut b_div);
                if !solved {
                    return Err("curve_fit_jac: unable to solve linear equation".to_owned());
                }
            }
        }
        let new_params_div = &params + &b_div;

        // get residuals for each of the new solutions
        evaluation = DVector::from_iterator(xs.len(), xs.iter().map(|&x| f(x, &new_params)));
        let evaluation_div =
            DVector::from_iterator(xs.len(), xs.iter().map(|&x| f(x, &new_params_div)));
        let diff = &ys - &evaluation;
        let diff_div = &ys - &evaluation_div;

        let resid: N::RealField = diff
            .iter()
            .map(|&r| r.modulus_squared())
            .fold(N::RealField::zero(), |acc, r| acc + r);
        let resid_div: N::RealField = diff_div
            .iter()
            .map(|&r| r.modulus_squared())
            .fold(N::RealField::zero(), |acc, r| acc + r);

        if resid_div < resid {
            damping /= damping_mult;
            evaluation = evaluation_div;
            params = new_params_div;
            sum_sq = resid_div;
        } else {
            params = new_params;
            sum_sq = resid;
        }

        jac_analytic(&mut jacobian, xs, &mut params, &mut jac);
        jac_transpose = jac.transpose();
    }

    Ok(params)
}