1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
use std::marker::PhantomData;

use rand::Rng;

use crate::{
    decision::MoveDecision,
    movegen::{simd::Simd1MoveGenerator, MoveGen},
    types::{board::Board, dice::Dice, prim::Bw},
};

#[derive(Debug, Clone)]
pub struct Game {
    pub board: Board,
    pub state: GameState,
}

impl Game {
    pub fn new(rng: &mut impl Rng) -> Self {
        let mut dice = Dice::roll(rng);
        while dice.0 == dice.1 {
            dice = Dice::roll(rng);
        }

        let player = if dice.0 > dice.1 {
            Bw::White
        } else {
            Bw::Black
        };

        Self {
            board: Board::default(),
            state: GameState::Dice(player, dice),
        }
    }

    pub fn next_moves<Generator: MoveGen>(&self) -> Vec<Board> {
        match self.state {
            GameState::Dice(player, dice) => {
                Generator::gen_unique_moves(&self.board, dice, player)
                // Simd1MoveGenerator::gen_unique_moves(&self.board, dice, player)
                // BasicMoveGenerator::gen_unique_moves(&self.board, dice, player)
            }
            GameState::Finished(_) => panic!("cannot get moves on finished game"),
        }
    }

    pub fn make_move_unchecked(&mut self, rng: &mut impl Rng, new_board: Board) {
        let GameState::Dice(player, _) = self.state else {
            panic!("cannot make move on finished game");
        };

        self.board = new_board;

        if let Some(player) = self.board.winner() {
            self.state = GameState::Finished(player);
        } else {
            let dice = Dice::roll(rng);
            self.state = GameState::Dice(-player, dice);
        }
    }

    pub fn skip_move_by_necessity(&mut self, rng: &mut impl Rng) {
        let GameState::Dice(player, _) = self.state else {
            panic!("cannot skip move on finished game");
        };

        // if let Some(player) = self.board.winner() {
        //     self.state = GameState::Finished(player);
        // } else {

        let dice = Dice::roll(rng);
        self.state = GameState::Dice(-player, dice);
    }

    pub fn play<'a, R: Rng, White: MoveDecision, Black: MoveDecision>(
        &'a mut self,
        rng: R,
        white: &'a mut White,
        black: &'a mut Black,
    ) -> GamePlay<'a, R, White, Black> {
        GamePlay {
            game: self,
            rng,
            white,
            black: Some(black),
            generator: PhantomData::<Simd1MoveGenerator>,
        }
    }

    pub fn play_self<'a, R: Rng, White: MoveDecision>(
        &'a mut self,
        rng: R,
        white: &'a mut White,
    ) -> GamePlay<'a, R, White> {
        GamePlay {
            game: self,
            rng,
            white,
            black: None,
            generator: PhantomData::<Simd1MoveGenerator>,
        }
    }

    pub fn is_finished(&self) -> bool {
        match self.state {
            GameState::Finished(_) => true,
            GameState::Dice(_, _) => false,
        }
    }
}

pub struct GamePlay<
    'a,
    R: Rng,
    White: MoveDecision,
    Black: MoveDecision = White,
    Generator: MoveGen = Simd1MoveGenerator,
> {
    game: &'a mut Game,
    rng: R,
    white: &'a mut White,
    generator: PhantomData<Generator>,
    black: Option<&'a mut Black>,
}

impl<'a, R: Rng, White: MoveDecision, Black: MoveDecision, Generator: MoveGen> Iterator
    for GamePlay<'a, R, White, Black, Generator>
{
    type Item = Game;

    fn next(&mut self) -> Option<Self::Item> {
        match self.game.state {
            GameState::Finished(_) => None,
            GameState::Dice(player, _) => {
                let moves = self.game.next_moves::<Generator>();

                if moves.is_empty() {
                    self.game.skip_move_by_necessity(&mut self.rng);
                } else {
                    let mov = match (&mut self.black, player) {
                        (None, _) => self.white.choose(player, moves),
                        (_, Bw::White) => self.white.choose(player, moves),
                        (Some(black), _) => black.choose(player, moves),
                    };
                    self.game.make_move_unchecked(&mut self.rng, mov.clone());
                }

                Some(self.game.clone())
            }
        }
    }
}

#[derive(Debug, Clone)]
pub enum GameState {
    Dice(Bw, Dice),
    Finished(Bw),
}

impl std::fmt::Display for GameState {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            GameState::Dice(bw, dice) => write!(f, "{}: {} {}", bw, dice.0 .0, dice.1 .0),
            GameState::Finished(bw) => write!(f, "{} won", bw),
        }
    }
}

impl std::fmt::Display for Game {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{:?}\n{}", self.board, self.state)
    }
}

#[cfg(test)]
mod test {
    use itertools::Itertools;

    use crate::{
        decision::RandomMoveDecision,
        game::{Game, GameState},
        movegen::{simd::Simd1MoveGenerator, MoveGen},
        types::prim::Bw,
    };

    #[test]
    fn print_game() {
        let mut game = Game::new(&mut rand::thread_rng());
        // game.state = GameState::Dice(Bw::White, Dice(Die(1), Die(3)));

        println!("{}", game);

        for game in game
            .play(
                rand::thread_rng(),
                &mut RandomMoveDecision(rand::thread_rng()),
                &mut RandomMoveDecision(rand::thread_rng()),
            )
            .take(100)
        {
            println!("{}\n", game);
        }
    }

    #[test]
    fn count_game() {
        let mut game = Game::new(&mut rand::thread_rng());

        println!(
            "{}",
            game.play(
                rand::thread_rng(),
                &mut RandomMoveDecision(rand::thread_rng()),
                &mut RandomMoveDecision(rand::thread_rng()),
            )
            .count()
        )
    }

    #[test]
    fn random_games_stats() {
        let mut blacks = 0;
        let mut whites = 0;

        for _ in 0..100 {
            let mut game = Game::new(&mut rand::thread_rng());

            println!(
                "{}",
                game.play(
                    rand::thread_rng(),
                    &mut RandomMoveDecision(rand::thread_rng()),
                    &mut RandomMoveDecision(rand::thread_rng()),
                )
                .count()
            );

            match game.state {
                GameState::Dice(_, _) => {}
                GameState::Finished(Bw::Black) => {
                    blacks += 1;
                }
                GameState::Finished(Bw::White) => {
                    whites += 1;
                }
            }
        }

        println!("{} / {}", whites, blacks);
    }

    #[test]
    pub fn test_generators_same() {
        for _ in 0..100 {
            let mut game = Game::new(&mut rand::thread_rng());
            let a = &mut RandomMoveDecision(rand::thread_rng());
            let b = &mut RandomMoveDecision(rand::thread_rng());

            let play = game.play(rand::thread_rng(), a, b);

            for game in play {
                let GameState::Dice(player, dice) = game.state else {
                    continue;
                };

                // assert_eq!(game.board, game.board.inverse());

                let mut normal = Simd1MoveGenerator::gen_unique_moves(&game.board, dice, player);
                let mut reversed =
                    Simd1MoveGenerator::gen_unique_moves(&game.board.inverse(), dice, -player)
                        .into_iter()
                        .map(|b| b.inverse())
                        .collect_vec();

                normal.sort();
                reversed.sort();

                // if normal != reversed {}
                if normal.len() <= 2 {
                    if normal != reversed {
                        println!("{}", game);
                        println!("{} {}", normal.len(), reversed.len());

                        println!("MOVES BY NORMAL:");

                        for brd in normal {
                            println!("{brd:?}");
                        }

                        println!("MOVES BY REVERSED:");

                        for brd in reversed {
                            println!("{brd:?}");
                        }

                        panic!();
                    }
                }

                // let mut s = game.next_moves::<Simd1MoveGenerator>();
                // s.sort();
                // let mut b = game.next_moves::<BasicMoveGenerator>();
                // b.sort();

                // if s != b && s.len() < 3 {
                //     println!("{}", game);
                //     println!("{} {}", s.len(), b.len());

                //     println!("MOVES BY BASIC:");

                //     for brd in b {
                //         println!("{brd:?}");
                //     }

                //     println!("MOVES BY SIMD:");
                //     for brd in s {
                //         println!("{brd:?}");
                //     }

                //     panic!();
                // }
            }
        }
    }
}