1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
//! # Linker
//!
//! This module links tokenised data from the [parser][crate::assembler::parser],
//! identifying the concrete values of all the symbols, and returning a vector
//! of all the machine code instructions.
//!
//! The main part of this module is [link_parsed_lines][crate::assembler::linker::link_parsed_lines]
//! which takes a vector of [parser::LineType][crate::assembler::parser::LineType]
//! from the parser; identifies all the tag values, and resolves all the tag
//! and instruction refernces to concrete values, returing a vector of
//! [BabyInstruction][crate::core::instructions::BabyInstruction] representing
//! machine code instruction.
//!
//! This output can used with the [core][crate::core] module to make a runnable
//! emulation model.
//!
//! This will return [LinkingError][crate::assembler::linker::errors::LinkingError]
//! if a tag reference cannot be bound or if the passed program stack is greater
//! than the total available memory.
//!
//! # Example
//! ```
//! use baby_emulator::assembler::{parser, linker, errors::AssemblyError};
//! use baby_emulator::core::instructions::BabyInstruction;
//!
//!
//! pub fn assemble(asm: &String) -> Result<Vec<BabyInstruction>, AssemblyError> {
//! let parse_result = match parser::parse_asm_string(asm, false) {
//! Ok(v) => v,
//! Err((l, e)) => return Err(AssemblyError::ParserError(l, e))
//! };
//! match linker::link_parsed_lines(parse_result) {
//! Ok(v) => Ok(v),
//! Err(e) => Err(AssemblyError::LinkerError(e))
//! }
//! }
//! ```
//!
use std::collections::HashMap;
use std::convert::identity;
use crate::core::{MEMORY_WORDS, instructions::BabyInstruction};
use super::parser::{LineType, Value, Instruction};
use errors::{LinkingError, TagError, MemoryExceedingError};
/// Contains types for handling errors found during linking.
pub mod errors;
#[cfg(test)]
mod tests;
/// Links the parsed lines into the corresponding machine code.
///
/// Determines the values for all the tags and resolves any refernces
/// to the tags to the determines value.
///
/// If the all the contained value expressions can be resolved without error it will
/// return an [Ok] with a vector of each instruction [BabyInstruction].
///
/// Returns a [LinkingError] if an error is encountered resolving the values.
pub fn link_parsed_lines(lines: Vec<LineType>) -> Result<Vec<BabyInstruction>, LinkingError> {
let inlined_tags = inline_tags(lines);
let tag_values = position_tags(&inlined_tags);
let preprocessed_lines: Vec<UnlinkedData> = inlined_tags.iter()
.map(|(_, t)| t.clone())
.collect();
link_tags(preprocessed_lines, tag_values)
}
/// Takes a list of unlinked values and a collection of tag names and values,
/// resolves all the tag name references.
///
/// Converts the unlinked data to a tuple of [BabyInstruction] representing concrete
/// machine code/program data.
///
/// If the all the contained value expressions can be resolved without error it will
/// return an [Ok] with a vector of each instruction [BabyInstruction].
///
/// Returns a [LinkingError] if an error is encountered resolving the values or if
/// the program stack is greater than the total Baby memory.
///
/// # Parameters
/// * `preprocessed_lines` - The unlinked data.
/// * `tag_values` - The tag names and corresponding values.
///
fn link_tags(preprocessed_lines: Vec<UnlinkedData>, tag_values: HashMap<String, i32>) ->
Result<Vec<BabyInstruction>, LinkingError> {
let mut instructions: Vec<BabyInstruction> = vec![];
if preprocessed_lines.len() > MEMORY_WORDS {
return Err(LinkingError::MemoryExceedingError(MemoryExceedingError { linked_size: preprocessed_lines.len() }));
}
for line in preprocessed_lines {
let val = match line.resolve(&tag_values) {
Ok(v) => v,
Err(e) => return Err(LinkingError::TagError(e))
};
instructions.push(val);
}
Ok(instructions)
}
/// Takes a vector of tuples of unlinked machine code values and any tag names specified,
/// generates a collection of tag names plus their index in the supplied vector.
///
/// # Example
/// ```
/// use baby_emulator::assembler::parser::LineType;
/// use baby_emulator::assembler::parser::Value;
/// use baby_emulator::assembler::linker::inline_tags;
/// use baby_emulator::assembler::linker::position_tags;
/// use baby_emulator::assembler::linker::UnlinkedData;
///
/// let parsed_lines = vec![
/// LineType::Tag("foo".to_owned()), // tag "foo" at index 0
/// LineType::Absolute(Value::Value(23))
/// ];
/// let inlined = inline_tags(parsed_lines);
/// let tags = position_tags(&inlined);
/// assert_eq!(tags.get("foo"), Some(&0));
/// ```
///
pub fn position_tags(lines: &Vec<(Option<String>, UnlinkedData)>) -> HashMap<String, i32> {
lines.iter().enumerate().filter_map(|(i, (t, _))| match t {
Some(v) => Some((v.clone(), i as i32)),
None => None
}).collect()
}
/// Takes a vector of parsed asm lines, converts them to [UnlinkedData]
/// representing only values to be converted into machine code, with tags
/// representing positions in the program stack being placed in a tuple
/// with the correspoding value it references.
///
/// # Parameters
/// * `lines` - A vector of parsed asm lines.
///
/// # Returns
/// - A vector of tuples of all the unlinked machine code values plus
/// a `Some(String)` name of a tag if one was specified.
///
/// # Example
/// ```
/// use baby_emulator::assembler::parser::LineType;
/// use baby_emulator::assembler::parser::Value;
/// use baby_emulator::assembler::linker::inline_tags;
/// use baby_emulator::assembler::linker::UnlinkedData;
///
/// let parsed_lines = vec![
/// LineType::Tag("foo".to_owned()),
/// LineType::Absolute(Value::Value(23))
/// ];
/// let inlined = inline_tags(parsed_lines);
/// match &inlined[0] {
/// (Some(tag_name), UnlinkedData::Absolute(Value::Value(line))) => {
/// assert_eq!(tag_name, "foo");
/// assert_eq!(*line, 23);
/// },
/// _ => panic!()
/// }
/// ```
///
pub fn inline_tags(lines: Vec<LineType>) -> Vec<(Option<String>, UnlinkedData)> {
lines.iter().enumerate().map(|(i, v)| {
let i = if i == 0 { 1 } else { i };
match &lines.get(i - 1) {
Some(LineType::Tag(tag)) => (Some(tag.clone()), v.clone()),
_ => (None::<String>, v.clone())
}
})
.map(|(t, l)| match l {
LineType::Absolute(v) => Some((t, UnlinkedData::Absolute(v))),
LineType::Instruction(v) => Some((t, UnlinkedData::Instruction(v))),
_ => None
})
.filter_map(identity)
.collect()
}
/// Represents either an instruction or an absolute value.
///
/// Both of these are "real" values (I.E. convert to real machine code values),
/// unlike say tags as in [LineType::Tag] received from the parser which are
/// compile-time calculated values.
///
/// This represents the expression that have not yet had their values fully
/// determined, anc contain say unverified references to tags that need
/// verifiying and resolving to a concrete value.
#[derive(Clone)]
pub enum UnlinkedData {
Absolute(Value),
Instruction(Instruction),
}
impl UnlinkedData {
/// Accepts a map of tag names and corresponding values and tries
/// to resolve the data's concrete value.
///
/// If the contained value expression is already a concrete value it will just
/// return that, if the contained value expression is a tag reference it
/// will lookup the tag name in the supplied hashmap and try to find it's value
/// returning [TagError] if it cannot be found.
///
/// # Parameters
///
/// * `tags` - A hashmap pf tag names and corresponding values.
///
pub fn resolve(&self, tags: &HashMap<String, i32>) -> Result<BabyInstruction, TagError> {
match self {
UnlinkedData::Absolute(v) => Self::resolve_absolute_value(v, tags),
UnlinkedData::Instruction(c) => Self::resolve_instruction(c, tags)
}
}
/// Converts an [Instruction] object to [BabyInstruction], resolving the inner
/// operand value expression to a concrete value.
///
/// If the inner value expression can be determined, it will return [BabyInstruction].
///
/// Will return [TagError] if the value expresion is a tag reference that
/// cannot be determined.
///
/// # Parameters
///
/// * `instr` - The instruction to be resolved.
/// * `tags` - A collection of tag names and values to be looked up.
///
pub fn resolve_instruction(instr: &Instruction, tags: &HashMap<String, i32>) -> Result<BabyInstruction, TagError> {
let val = match Self::resolve_value(&instr.get_operand(), tags) {
Ok(v) => v,
Err(v) => return Err(TagError::UnknownTagName(v))
} as u16;
match instr {
Instruction::Jump(_) => Ok(BabyInstruction::Jump(val)),
Instruction::RelativeJump(_) => Ok(BabyInstruction::RelativeJump(val)),
Instruction::Negate(_) => Ok(BabyInstruction::Negate(val)),
Instruction::Store(_) => Ok(BabyInstruction::Store(val)),
Instruction::Subtract(_) => Ok(BabyInstruction::Subtract(val)),
Instruction::Test => Ok(BabyInstruction::SkipNextIfNegative),
Instruction::Stop => Ok(BabyInstruction::Stop),
}
}
/// Tries to resolve an absolute value.
///
/// Wrapper for [UnlinkedData::resolve_value], returns [BabyInstruction::AbsoluteValue]
/// if successful, and [TagError::UnknownTagName] if a tag name reference cannot
/// be determined.
///
/// # Parameters
/// * `val` - The value to be resolved.
/// * `tags` - A collection of tag names and values to be looked up.
///
pub fn resolve_absolute_value(val: &Value, tags: &HashMap<String, i32>) -> Result<BabyInstruction, TagError> {
match Self::resolve_value(val, tags) {
Ok(v) => Ok(BabyInstruction::AbsoluteValue(v)),
Err(v) => Err(TagError::UnknownTagName(v))
}
}
/// Helper function, tries to resolve a value expression.
///
/// If the value expression is just [Value::Value] then it will just return
/// the inner concrete value, if it's a tag reference, it will try to lookup the
/// tag value in the supplied hashmap, returning the tag name if it can't be
/// found.
pub fn resolve_value(val: &Value, tags: &HashMap<String, i32>) -> Result<i32, String> {
match val {
Value::Tag(tag) => Self::get_tag(tag, tags),
Value::Value(v) => return Ok(*v),
}
}
/// Helper function Tries to get a tag's value from a collection
/// of tags returns the tag name if it can't be found.
pub fn get_tag(tag: &str, tags: &HashMap<String, i32>) -> Result<i32, String> {
match tags.get(tag).cloned() {
Some(v) => Ok(v),
None => Err(tag.to_owned())
}
}
}