1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
//! A very fast bloom filter for Rust.
//! Implemented with L1 cache friendly 512 bit blocks and efficient hashing.
//!
//! # Examples
//! ```
//! use b100m_filter::BloomFilter;
//!
//! let num_blocks = 4; // each block is 64 bytes, 512 bits
//! let values = vec!["42", "qwerty", "bloom"];
//!
//! let filter = BloomFilter::builder(num_blocks).items(values.iter());
//! assert!(filter.contains("42"));
//! assert!(filter.contains("bloom"));
//! ```
use getrandom::getrandom;
use siphasher::sip::SipHasher13;
use std::{
hash::{Hash, Hasher},
iter::ExactSizeIterator,
};
#[cfg(test)]
pub(crate) mod test_util;
/// u64 have 64 bits, and therefore are used to store 64 elements in the bloom filter.
/// We use a bitmaks with a single bit set to interpret a number as a bit index.
/// 2^6 - 1 = 63 = the max bit index of a u64.
const LOG2_U64_BITS: u32 = u32::ilog2(u64::BITS);
/// Number of bytes per block, matching a typical L1 cache line size.
const BLOCK_SIZE_BYTES: usize = 64;
/// Number of u64's (8 bytes per u64) per block, matching a typical L1 cache line size.
const BLOCK_SIZE: usize = BLOCK_SIZE_BYTES / 8;
/// Used to shift u64 index
const LOG2_BLOCK_SIZE: u32 = u32::ilog2(BLOCK_SIZE as u32);
/// Gets 6 last bits from the hash
const BIT_MASK: u64 = 0b0000000000000000000000000000000000000000000000000000000000111111;
/// Gets 3 last bits from the shifted hash
const U64_MASK: u64 = 0b0000000000000000000000000000000000000000000000000000000000000111;
/// Number of coordinates (i.e. bits in our bloom filter) that can be derived by one hash.
/// One hash is u64 bits, and we only need 9 bits (LOG2_U64_BITS + LOG2_BLOCK_SIZE) from
/// the hash for a bit index. For more runtime performance we can cheaply copy an index
/// from the hash, instead of computing the next hash.
///
/// From experiments, 4 coordinates from the hash provides the best performance
/// for `contains` for existing and non-existing values.
const NUM_COORDS_PER_HASH: u32 = 4;
/// Returns the first u64 and bit index pair from 9 bits of the hash.
/// Which 9 bits is determined from `seed`.
/// From the those 9 bits:
/// The u64 index is the first 3 bits, shifted right.
/// The bit index is the last 6 bits.
#[inline]
const fn coordinate(hash: u64, seed: u32) -> (usize, u64) {
let index = ((hash >> (LOG2_U64_BITS + (seed * (LOG2_U64_BITS + LOG2_BLOCK_SIZE)))) & U64_MASK)
as usize;
let bit = 1u64 << ((hash >> (seed * (LOG2_U64_BITS + LOG2_BLOCK_SIZE))) & BIT_MASK);
(index, bit)
}
#[inline]
fn optimal_hashes(num_bits: usize, num_items: usize) -> u64 {
let m = num_bits as f64;
let n = std::cmp::max(num_items, 1) as f64;
let num_hashes = m / n * f64::ln(2.0f64);
floor_round(num_hashes)
}
#[inline]
fn floor_round(x: f64) -> u64 {
let floored = x.floor() as u64;
let thresh = NUM_COORDS_PER_HASH as u64;
if floored < thresh {
thresh
} else {
floored - (floored % thresh)
}
}
/// A bloom filter builder
///
/// This type can be used to construct an instance of `BloomFilter`
/// through a builder-like pattern.
#[derive(Debug, Clone)]
pub struct Builder {
num_blocks: usize,
seeds: [[u8; 16]; 2],
}
impl Builder {
/// Sets the seed for this builder. The later constructed `BloomFilter`
/// will use this seed when hashing items.
///
/// # Examples
///
/// ```
/// use b100m_filter::BloomFilter;
///
/// let bloom = BloomFilter::builder(4).seed(&[[0u8; 16]; 2]).hashes(4);
/// ```
pub fn seed(mut self, seeds: &[[u8; 16]; 2]) -> Self {
self.seeds.copy_from_slice(seeds);
self
}
/// "Consumes" this builder, using the provided `num_hashes` to return an
/// empty `BloomFilter`. For performance, the actual number of
/// hashes performed internally will be rounded to down to the nearest
/// multiple of 4.
///
/// # Examples
///
/// ```
/// use b100m_filter::BloomFilter;
///
/// let bloom = BloomFilter::builder(4).hashes(4);
/// ```
pub fn hashes(self, num_hashes: u64) -> BloomFilter {
let hashers = [
SipHasher13::new_with_key(&self.seeds[0]),
SipHasher13::new_with_key(&self.seeds[1]),
];
BloomFilter {
mem: vec![[0u64; BLOCK_SIZE]; self.num_blocks],
num_hashes,
seeds: self.seeds,
hashers,
}
}
/// "Consumes" this builder, using the provided `expected_num_items` to return an
/// empty `BloomFilter`. More or less than `expected_num_items` may be inserted into
/// `BloomFilter`, but the number of hashes per item is intially calculated
/// to minimize false positive rate for exactly `expected_num_items`.
///
/// # Examples
///
/// ```
/// use b100m_filter::BloomFilter;
///
/// let bloom = BloomFilter::builder(4).expected_items(500);
/// ```
pub fn expected_items(self, expected_num_items: usize) -> BloomFilter {
let num_hashes = optimal_hashes(BLOCK_SIZE * 64, expected_num_items / self.num_blocks);
self.hashes(num_hashes)
}
/// "Consumes" this builder and constructs a `BloomFilter` containing
/// all values in `items`. The number of hashes per item is calculated
/// based on `items.len()` to minimize false positive rate.
///
/// # Examples
///
/// ```
/// use b100m_filter::BloomFilter;
///
/// let bloom = BloomFilter::builder(4).items([1, 2, 3].iter());
/// ```
pub fn items<I: ExactSizeIterator<Item = impl Hash>>(self, items: I) -> BloomFilter {
let mut filter = self.expected_items(items.len());
filter.extend(items);
filter
}
}
/// A space efficient approximate membership set data structure.
/// False positives from `contains` are possible, but false negatives
/// are not, i.e. `contains` for all items in the set is guaranteed to return
/// true, while `contains` for all items not in the set probably return false.
///
/// `BloomFilter` is supported by an underlying bit vector, chunked into 512 bit "blocks", to track item membership.
/// To insert, a number of bits, based on the item's hash, are set in the underlying bit vector.
/// To check membership, a number of bits, based on the item's hash, are checked in the underlying bit vector.
///
/// Once constructed, a bloom filter's underlying memory usage or number of bits per item does not change.
///
/// # Examples
/// ```
/// use b100m_filter::BloomFilter;
///
/// let num_blocks = 4; // each block is 64 bytes, 512 bits
/// let values = vec!["42", "bloom"];
///
/// let mut filter = BloomFilter::builder(num_blocks).items(values.iter());
/// filter.insert("qwerty");
/// assert!(filter.contains("42"));
/// assert!(filter.contains("bloom"));
/// assert!(filter.contains("qwerty"));
/// ```
#[derive(Debug, Clone)]
pub struct BloomFilter {
mem: Vec<[u64; BLOCK_SIZE]>,
num_hashes: u64,
seeds: [[u8; 16]; 2],
hashers: [SipHasher13; 2],
}
impl BloomFilter {
/// Creates a new instance of `Builder` to construct a `BloomFilter`
/// with `num_blocks` number of blocks for tracking item membership.
/// Each block is 512 bits of memory.
///
/// # Examples
///
/// ```
/// use b100m_filter::{BloomFilter, Builder};
///
/// let builder: Builder = BloomFilter::builder(16);
/// let bloom: BloomFilter = builder.hashes(4);
/// ```
pub fn builder(num_blocks: usize) -> Builder {
let mut seeds = [[0u8; 16]; 2];
getrandom(&mut seeds[0]).unwrap();
getrandom(&mut seeds[1]).unwrap();
Builder { num_blocks, seeds }
}
/// Returns the number of bits derived per item for the bloom filter.
/// This number is effectivly the number of hashes per item, but
/// all hashes are not actually performed.
///
/// The returned value is always a multiple of 4 due to internal
/// optimizations.
pub fn num_hashes(&self) -> u64 {
self.num_hashes
}
/// Produces a new hash efficiently from two orignal hashes and a new seed.
#[inline]
fn seeded_hash_from_hashes(h1: &mut u64, h2: &mut u64, seed: u64) -> u64 {
*h1 = h1.wrapping_add(*h2);
*h2 = h2.wrapping_add(seed);
*h1
}
/// Returns a `usize` within the range of `0..self.mem.len()`
/// A more performant alternative to `hash % self.mem.len()`
#[inline]
fn to_index(&self, hash: u64) -> usize {
(((hash >> 32) as usize * self.mem.len()) >> 32) as usize
}
/// Adds a value to the bloom filter.
///
/// # Examples
/// ```
/// use b100m_filter::BloomFilter;
///
/// let mut bloom = BloomFilter::builder(4).hashes(4);
/// bloom.insert(&2);
/// assert!(bloom.contains(&2));
/// ```
#[inline]
pub fn insert(&mut self, val: &(impl Hash + ?Sized)) {
let [mut h1, mut h2] = self.get_orginal_hashes(val);
let block_index = self.to_index(h1);
for i in (0..self.num_hashes).step_by(NUM_COORDS_PER_HASH as usize) {
let h = Self::seeded_hash_from_hashes(&mut h1, &mut h2, i);
for i in 1..=NUM_COORDS_PER_HASH {
let (index, bit) = coordinate(h, i);
self.mem[block_index][index] |= bit;
}
}
}
/// Returns `false` if the bloom filter definitely does not contain a value.
/// Returns `true` if the bloom filter may contain a value, with a degree of certainty.
///
/// # Examples
///
/// ```
/// use b100m_filter::BloomFilter;
///
/// let bloom = BloomFilter::builder(4).items([1, 2, 3].iter());
/// assert!(bloom.contains(&1));
/// ```
#[inline]
pub fn contains(&self, val: &(impl Hash + ?Sized)) -> bool {
let [mut h1, mut h2] = self.get_orginal_hashes(val);
let block_index = self.to_index(h1);
let cached_block = self.mem[block_index];
(0..self.num_hashes)
.step_by(NUM_COORDS_PER_HASH as usize)
.into_iter()
.all(|i| {
let h = Self::seeded_hash_from_hashes(&mut h1, &mut h2, i);
(1..=NUM_COORDS_PER_HASH).all(|i| {
let (index, bit) = coordinate(h, i);
cached_block[index] & bit > 0
})
})
}
#[inline]
fn get_orginal_hashes(&self, val: &(impl Hash + ?Sized)) -> [u64; 2] {
let mut hashes = [0u64, 0u64];
for (i, hasher_template) in self.hashers.iter().enumerate() {
let hasher = &mut hasher_template.clone();
val.hash(hasher);
hashes[i] = hasher.finish();
}
hashes
}
}
impl<T> Extend<T> for BloomFilter
where
T: Hash,
{
#[inline]
fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
for val in iter {
self.insert(&val);
}
}
}
impl PartialEq for BloomFilter {
fn eq(&self, other: &Self) -> bool {
self.mem == other.mem && self.seeds == other.seeds && self.num_hashes == other.num_hashes
}
}
impl Eq for BloomFilter {}
#[cfg(test)]
mod tests {
use super::*;
use crate::test_util::*;
use rand::{Rng, SeedableRng};
use std::collections::HashSet;
#[test]
fn random_inserts_always_contained() {
for mag in 1..7 {
let size = 10usize.pow(mag);
for bloom_size_mag in 6..10 {
let bloom_size_bytes = 1 << bloom_size_mag;
let sample_vals = random_strings(size, 16, 32, *b"seedseedseedseed");
let mut control: HashSet<String> = HashSet::new();
let block_size = bloom_size_bytes / 64;
let filter = BloomFilter::builder(block_size).items(sample_vals.iter());
for x in &sample_vals {
control.insert(x.clone());
assert!(filter.contains(x));
}
}
}
}
#[test]
fn seeded_is_same() {
let mag = 3;
let size = 10usize.pow(mag);
let bloom_size_bytes = 1 << 10;
let sample_vals = random_strings(size, 16, 32, *b"seedseedseedseed");
let block_size = bloom_size_bytes / 64;
for x in 0u8..4 {
let seed = [[x; 16]; 2];
let filter1 = BloomFilter::builder(block_size)
.seed(&seed)
.items(sample_vals.iter());
let filter2 = BloomFilter::builder(block_size)
.seed(&seed)
.items(sample_vals.iter());
assert_eq!(filter1, filter2);
}
}
#[test]
fn false_pos_decrease_with_size() {
for mag in 1..5 {
let size = 10usize.pow(mag);
let mut prev_fp = 1.0;
let mut prev_prev_fp = 1.0;
for bloom_size_mag in 6..18 {
let bloom_size_bytes = 1 << bloom_size_mag;
let block_size = bloom_size_bytes / 64;
let sample_vals = random_strings(size, 16, 32, *b"seedseedseedseed");
let sample_anti_vals = random_strings(100000, 16, 32, *b"antiantiantianti");
let mut control: HashSet<String> = HashSet::new();
let seed = [[1u8; 16]; 2];
let filter = BloomFilter::builder(block_size)
.seed(&seed)
.items(sample_vals.iter());
for x in &sample_vals {
control.insert(x.clone());
assert!(filter.contains(x));
}
let mut total = 0;
let mut false_positives = 0;
for x in &sample_anti_vals {
if !control.contains(x) {
total += 1;
if filter.contains(x) {
false_positives += 1;
}
}
}
let fp = (false_positives as f64) / (total as f64);
println!(
"{:?}, {:?}, {:.6}, {:?}",
size,
bloom_size_bytes,
fp,
filter.num_hashes(),
);
assert!(fp <= prev_fp || prev_fp <= prev_prev_fp); // allows 1 data point to be higher
prev_prev_fp = prev_fp;
prev_fp = fp;
}
}
}
#[test]
fn test_floor_round() {
for i in 0..NUM_COORDS_PER_HASH {
assert_eq!(NUM_COORDS_PER_HASH as u64, floor_round(i as f64));
}
for i in (NUM_COORDS_PER_HASH as u64..100).step_by(NUM_COORDS_PER_HASH as usize) {
for j in 0..(NUM_COORDS_PER_HASH as u64) {
let x = (i + j) as f64;
assert_eq!(i, floor_round(x));
assert_eq!(i, floor_round(x + 0.9999));
assert_eq!(i, floor_round(x + 0.0001));
}
}
}
fn assert_even_distribution(distr: Vec<u64>, expected: u64, threshold: u64) {
for x in distr {
let diff = ((x as i64) - (expected as i64)).abs();
assert!(
diff <= threshold as i64,
"{x:?} deviates from {expected:?} (threshold: {threshold:?})"
);
}
}
#[test]
fn block_hash_distribution() {
let mut rng = rand_xorshift::XorShiftRng::from_seed(*b"seedseedseedseed");
let num_blocks = 100;
let filter = BloomFilter::builder(num_blocks).items(vec![1].iter());
let mut counts = vec![0u64; num_blocks];
let iterations = 10000000;
for _ in 0..iterations {
let h1 = (&mut rng).gen_range(0..u64::MAX);
let block_index = filter.to_index(h1);
counts[block_index] += 1;
}
let thresh = ((1.025 * (iterations / num_blocks) as f64)
- ((iterations / num_blocks) as f64)) as u64;
assert_even_distribution(counts, (iterations / num_blocks) as u64, thresh);
}
#[test]
fn index_hash_distribution() {
let mut rng = rand_xorshift::XorShiftRng::from_seed(*b"seedseedseedseed");
let mut h1 = (&mut rng).gen_range(0..u64::MAX);
let mut h2 = (&mut rng).gen_range(0..u64::MAX);
let mut counts = vec![vec![0u64; 64]; BLOCK_SIZE];
let iterations = 10000000;
for i in 0..iterations {
let hi = BloomFilter::seeded_hash_from_hashes(&mut h1, &mut h2, i);
for i in 1..NUM_COORDS_PER_HASH + 1 {
let (index, bit) = coordinate(hi, i);
let bit_index = u64::ilog2(bit) as usize;
counts[index][bit_index] += 1;
}
}
let total_iterations = (iterations * NUM_COORDS_PER_HASH as u64) as u64;
let total_coords = (BLOCK_SIZE as u64 * 64) as u64;
let thresh = ((1.025 * (total_iterations / total_coords) as f64)
- ((total_iterations / total_coords) as f64)) as u64;
println!("{:?}", counts);
assert_even_distribution(
counts.into_iter().flatten().collect(),
(total_iterations / total_coords) as u64,
thresh,
);
}
}