Expand description
axonml-optim - Optimization Algorithms
Provides optimizers for training neural networks, including:
- SGD with momentum and Nesterov acceleration
- Adam and
AdamW RMSprop- Learning rate schedulers
§Example
ⓘ
use axonml_optim::prelude::*;
use axonml_nn::{Linear, Module, Sequential};
// Create model
let model = Sequential::new()
.add(Linear::new(784, 128))
.add(Linear::new(128, 10));
// Create optimizer
let mut optimizer = Adam::new(model.parameters(), 0.001);
// Training loop
for epoch in 0..100 {
let output = model.forward(&input);
let loss = compute_loss(&output, &target);
optimizer.zero_grad();
loss.backward();
optimizer.step();
}@version 0.1.0
@author AutomataNexus Development Team
Re-exports§
pub use adam::Adam;pub use adam::AdamW;pub use lr_scheduler::CosineAnnealingLR;pub use lr_scheduler::ExponentialLR;pub use lr_scheduler::LRScheduler;pub use lr_scheduler::MultiStepLR;pub use lr_scheduler::OneCycleLR;pub use lr_scheduler::ReduceLROnPlateau;pub use lr_scheduler::StepLR;pub use lr_scheduler::WarmupLR;pub use optimizer::Optimizer;pub use rmsprop::RMSprop;pub use sgd::SGD;