Skip to main content

Crate axonml_nn

Crate axonml_nn 

Source
Expand description

axonml-nn - Neural Network Module Library

Provides neural network layers, activation functions, loss functions, and utilities for building deep learning models in Axonml.

§Key Components

  • Module trait: Core interface for all neural network modules
  • Parameter: Wrapper for learnable parameters
  • Sequential: Container for chaining modules
  • Layers: Linear, Conv, RNN, LSTM, Attention, etc.
  • Activations: ReLU, Sigmoid, Tanh, GELU, etc.
  • Loss Functions: MSE, CrossEntropy, BCE, etc.
  • Initialization: Xavier, Kaiming, orthogonal, etc.
  • Functional API: Stateless operations

§Example

use axonml_nn::prelude::*;

// Build a simple MLP
let model = Sequential::new()
    .add(Linear::new(784, 256))
    .add(ReLU)
    .add(Linear::new(256, 10));

// Forward pass
let output = model.forward(&input);

// Compute loss
let loss = CrossEntropyLoss::new().compute(&output, &target);

// Backward pass
loss.backward();

@version 0.1.0 @author AutomataNexus Development Team

Re-exports§

pub use module::Module;
pub use module::ModuleList;
pub use parameter::Parameter;
pub use sequential::Sequential;
pub use layers::AdaptiveAvgPool2d;
pub use layers::AvgPool1d;
pub use layers::AvgPool2d;
pub use layers::BatchNorm1d;
pub use layers::BatchNorm2d;
pub use layers::Conv1d;
pub use layers::Conv2d;
pub use layers::Dropout;
pub use layers::Embedding;
pub use layers::GRUCell;
pub use layers::GroupNorm;
pub use layers::InstanceNorm2d;
pub use layers::LSTMCell;
pub use layers::LayerNorm;
pub use layers::Linear;
pub use layers::MaxPool1d;
pub use layers::MaxPool2d;
pub use layers::MultiHeadAttention;
pub use layers::RNNCell;
pub use layers::GRU;
pub use layers::LSTM;
pub use layers::RNN;
pub use activation::Identity;
pub use activation::LeakyReLU;
pub use activation::LogSoftmax;
pub use activation::ReLU;
pub use activation::SiLU;
pub use activation::Sigmoid;
pub use activation::Softmax;
pub use activation::Tanh;
pub use activation::ELU;
pub use activation::GELU;
pub use loss::BCELoss;
pub use loss::BCEWithLogitsLoss;
pub use loss::CrossEntropyLoss;
pub use loss::L1Loss;
pub use loss::MSELoss;
pub use loss::NLLLoss;
pub use loss::Reduction;
pub use loss::SmoothL1Loss;
pub use init::constant;
pub use init::diag;
pub use init::eye;
pub use init::glorot_normal;
pub use init::glorot_uniform;
pub use init::he_normal;
pub use init::he_uniform;
pub use init::kaiming_normal;
pub use init::kaiming_uniform;
pub use init::normal;
pub use init::ones;
pub use init::orthogonal;
pub use init::randn;
pub use init::sparse;
pub use init::uniform;
pub use init::uniform_range;
pub use init::xavier_normal;
pub use init::xavier_uniform;
pub use init::zeros;
pub use init::InitMode;

Modules§

activation
Activation Modules - Non-linear Activation Functions
functional
Functional API - Stateless Neural Network Operations
init
Weight Initialization - Parameter Initialization Strategies
layers
Neural Network Layers
loss
Loss Functions - Training Objectives
module
Module Trait - Neural Network Module Interface
parameter
Parameter - Learnable Parameter Wrapper
prelude
Common imports for neural network development.
sequential
Sequential - Sequential Container for Modules