Expand description
Axonml Fusion - Kernel Fusion Library
Provides kernel fusion support for combining multiple operations into single optimized kernels. Common fusion patterns include:
- MatMul + Bias + Activation: Fused dense layer
- Conv + BatchNorm + ReLU: Fused convolution block
- Elementwise chains: Multiple elementwise ops in one pass
- Reduction + Transform: Softmax, LayerNorm patterns
§Example
ⓘ
use axonml_fusion::{FusedOp, fuse_matmul_bias_relu};
let fused = fuse_matmul_bias_relu(&weight, &bias);
let output = fused.execute(&input);@version 0.1.0 @author AutomataNexus Development Team
Re-exports§
pub use error::FusionError;pub use error::FusionResult;pub use patterns::FusionPattern;pub use patterns::detect_patterns;pub use elementwise::FusedElementwise;pub use elementwise::fuse_elementwise;pub use linear::FusedLinear;pub use linear::fuse_matmul_bias_relu;pub use optimizer::FusionOptimizer;pub use optimizer::optimize_graph;
Modules§
- elementwise
- Fused Elementwise Operations
- error
- Fusion Error Types
- linear
- Fused Linear Operations
- optimizer
- Graph Fusion Optimizer
- patterns
- Fusion Pattern Detection
Traits§
- FusedOp
- Trait for fused operations.