Expand description
axonml-data - Data Loading Utilities
Provides data loading infrastructure for training neural networks:
- Dataset trait for defining data sources
DataLoaderfor batched iteration with parallel loading- Samplers for controlling data access patterns
- Transforms for data augmentation
§Example
ⓘ
use axonml_data::prelude::*;
// Define a simple dataset
struct MyDataset {
data: Vec<(Tensor<f32>, Tensor<f32>)>,
}
impl Dataset for MyDataset {
type Item = (Tensor<f32>, Tensor<f32>);
fn len(&self) -> usize {
self.data.len()
}
fn get(&self, index: usize) -> Option<Self::Item> {
self.data.get(index).cloned()
}
}
// Create a DataLoader
let loader = DataLoader::new(dataset, 32)
.shuffle(true)
.num_workers(4);
for batch in loader.iter() {
// Process batch
}@version 0.1.0
@author AutomataNexus Development Team
Re-exports§
pub use collate::Collate;pub use collate::DefaultCollate;pub use collate::StackCollate;pub use dataloader::Batch;pub use dataloader::DataLoader;pub use dataloader::DataLoaderIter;pub use dataset::ConcatDataset;pub use dataset::Dataset;pub use dataset::InMemoryDataset;pub use dataset::MapDataset;pub use dataset::SubsetDataset;pub use dataset::TensorDataset;pub use sampler::BatchSampler;pub use sampler::RandomSampler;pub use sampler::Sampler;pub use sampler::SequentialSampler;pub use sampler::SubsetRandomSampler;pub use sampler::WeightedRandomSampler;pub use transforms::Compose;pub use transforms::Normalize;pub use transforms::RandomNoise;pub use transforms::ToTensor;pub use transforms::Transform;
Modules§
- collate
- Collate - Batch Assembly Functions
- dataloader
DataLoader- Batched Data Iteration- dataset
- Dataset Trait - Core Data Abstraction
- prelude
- Common imports for data loading.
- sampler
- Samplers - Data Access Patterns
- transforms
- Transforms - Data Augmentation and Preprocessing