1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
use anyhow::Result;
use axiom_codec::HiLo;
use serde::{Deserialize, Serialize};

use crate::{impl_input_flatten_for_fixed_array, impl_input_flatten_for_tuple};

pub trait InputFlatten<T: Copy>: Sized {
    const NUM_FE: usize;
    fn flatten_vec(&self) -> Vec<T>;
    fn unflatten(vec: Vec<T>) -> Result<Self>;
}

#[derive(Clone, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub struct FixLenVec<T: Copy, const N: usize> {
    pub vec: Vec<T>,
}

impl<T: Copy, const N: usize> FixLenVec<T, N> {
    pub fn new(vec: Vec<T>) -> anyhow::Result<Self> {
        if vec.len() != N {
            anyhow::bail!("Invalid input length: {} != {}", vec.len(), N);
        }
        Ok(FixLenVec { vec })
    }

    pub fn into_inner(self) -> Vec<T> {
        self.vec
    }
}

impl<T: Copy, const N: usize> From<Vec<T>> for FixLenVec<T, N> {
    fn from(vec: Vec<T>) -> Self {
        Self { vec }
    }
}

macro_rules! check_input_length {
    ($vec:ident) => {
        if $vec.len() != <Self as InputFlatten<T>>::NUM_FE {
            anyhow::bail!(
                "Invalid input length: {} != {}",
                $vec.len(),
                <Self as InputFlatten<T>>::NUM_FE
            );
        }
    };
}

impl<T: Copy, const N: usize> InputFlatten<T> for FixLenVec<T, N> {
    const NUM_FE: usize = N;
    fn flatten_vec(&self) -> Vec<T> {
        self.vec.clone()
    }
    fn unflatten(vec: Vec<T>) -> Result<Self> {
        check_input_length!(vec);
        Ok(FixLenVec { vec })
    }
}

impl<T: Copy> InputFlatten<T> for HiLo<T> {
    const NUM_FE: usize = 2;
    fn flatten_vec(&self) -> Vec<T> {
        vec![self.hi(), self.lo()]
    }
    fn unflatten(vec: Vec<T>) -> Result<Self> {
        check_input_length!(vec);
        Ok(HiLo::from_hi_lo([vec[0], vec[1]]))
    }
}

impl_input_flatten_for_tuple!(HiLo<T>, HiLo<T>);

impl<T: Copy> InputFlatten<T> for T {
    const NUM_FE: usize = 1;
    fn flatten_vec(&self) -> Vec<T> {
        vec![*self]
    }
    fn unflatten(vec: Vec<T>) -> Result<Self> {
        check_input_length!(vec);
        Ok(vec[0])
    }
}

impl_input_flatten_for_fixed_array!(T);
impl_input_flatten_for_fixed_array!(HiLo<T>);

#[macro_export]
macro_rules! impl_input_flatten_for_tuple {
    ($type1:ty, $type2:ty) => {
        impl<T: Copy> InputFlatten<T> for ($type1, $type2)
        where
            $type1: InputFlatten<T>,
            $type2: InputFlatten<T>,
        {
            const NUM_FE: usize = <$type1>::NUM_FE + <$type2>::NUM_FE;

            fn flatten_vec(&self) -> Vec<T> {
                let mut first_vec = self.0.flatten_vec();
                first_vec.extend(self.1.flatten_vec());
                first_vec
            }

            fn unflatten(vec: Vec<T>) -> anyhow::Result<Self> {
                check_input_length!(vec);
                let (first_part, second_part) = vec.split_at(<$type1>::NUM_FE);
                let first = <$type1>::unflatten(first_part.to_vec())?;
                let second = <$type2>::unflatten(second_part.to_vec())?;
                Ok((first, second))
            }
        }
    };
}

#[macro_export]
macro_rules! impl_input_flatten_for_fixed_array {
    ($type1:ty) => {
        impl<T: Copy, const N: usize> InputFlatten<T> for [$type1; N]
        where
            $type1: InputFlatten<T>,
        {
            const NUM_FE: usize = <$type1>::NUM_FE * N;

            fn flatten_vec(&self) -> Vec<T> {
                self.to_vec()
                    .iter()
                    .map(|x| x.flatten_vec())
                    .flatten()
                    .collect()
            }

            fn unflatten(vec: Vec<T>) -> anyhow::Result<Self> {
                check_input_length!(vec);
                let res = vec
                    .chunks(<$type1>::NUM_FE)
                    .into_iter()
                    .map(|x| <$type1>::unflatten(x.to_vec()).unwrap())
                    .collect::<Vec<_>>();
                let mut array = [res[0]; N];
                for (i, item) in res.into_iter().enumerate() {
                    array[i] = item;
                }
                Ok(array)
            }
        }
    };
}