1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
/*
 * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * SPDX-License-Identifier: Apache-2.0
 */
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.

use std::{process, sync::Arc, thread};

use aws_smithy_http_server::{AddExtensionLayer, Router};
use parking_lot::Mutex;
use pyo3::{prelude::*, types::IntoPyDict};
use signal_hook::{consts::*, iterator::Signals};
use tokio::runtime;
use tower::ServiceBuilder;

use crate::{PyHandler, PyHandlers, PySocket, PyState};

/// Python compatible wrapper for the [aws_smithy_http_server::Router] type.
#[pyclass(text_signature = "(router)")]
#[derive(Debug, Clone)]
pub struct PyRouter(pub Router);

/// Python application definition, holding the handlers map, the optional Python context object,
/// the list of workers and the [PyRouter].
#[pyclass(subclass, text_signature = "()")]
#[derive(Debug, Default)]
pub struct PyApp {
    pub handlers: PyHandlers,
    pub context: Option<Arc<PyObject>>,
    pub workers: Mutex<Vec<PyObject>>,
    pub router: Option<PyRouter>,
}

impl Clone for PyApp {
    fn clone(&self) -> Self {
        Self {
            handlers: self.handlers.clone(),
            context: self.context.clone(),
            workers: Mutex::new(vec![]),
            router: self.router.clone(),
        }
    }
}

#[allow(dead_code)]
impl PyApp {
    /// Handle the graceful termination of Python workers by looping through all the
    /// active workers and calling `terminate()` on them. If termination fails, this
    /// method will try to `kill()` any failed worker.
    fn graceful_termination(&self, workers: &Mutex<Vec<PyObject>>) -> ! {
        let workers = workers.lock();
        for (idx, worker) in workers.iter().enumerate() {
            let idx = idx + 1;
            Python::with_gil(|py| {
                let pid: isize = worker
                    .getattr(py, "pid")
                    .map(|pid| pid.extract(py).unwrap_or(-1))
                    .unwrap_or(-1);
                tracing::debug!("Terminating worker {idx}, PID: {pid}");
                match worker.call_method0(py, "terminate") {
                    Ok(_) => {}
                    Err(e) => {
                        tracing::error!("Error terminating worker {idx}, PID: {pid}: {e}");
                        worker
                            .call_method0(py, "kill")
                            .map_err(|e| {
                                tracing::error!(
                                    "Unable to kill kill worker {idx}, PID: {pid}: {e}"
                                );
                            })
                            .unwrap();
                    }
                }
            });
        }
        process::exit(0);
    }

    /// Handler the immediate termination of Python workers by looping through all the
    /// active workers and calling `kill()` on them.
    fn immediate_termination(&self, workers: &Mutex<Vec<PyObject>>) -> ! {
        let workers = workers.lock();
        for (idx, worker) in workers.iter().enumerate() {
            let idx = idx + 1;
            Python::with_gil(|py| {
                let pid: isize = worker
                    .getattr(py, "pid")
                    .map(|pid| pid.extract(py).unwrap_or(-1))
                    .unwrap_or(-1);
                tracing::debug!("Killing worker {idx}, PID: {pid}");
                worker
                    .call_method0(py, "kill")
                    .map_err(|e| {
                        tracing::error!("Unable to kill kill worker {idx}, PID: {pid}: {e}");
                    })
                    .unwrap();
            });
        }
        process::exit(0);
    }

    /// Register and handler signals of the main Rust thread. Signals not registered
    /// in this method are ignored.
    ///
    /// Signals supported:
    ///   * SIGTERM|SIGQUIT - graceful termination of all workers.
    ///   * SIGINT - immediate termination of all workers.
    ///
    /// Other signals are NOOP.
    fn block_on_rust_signals(&self) {
        let mut signals =
            Signals::new(&[SIGINT, SIGHUP, SIGQUIT, SIGTERM, SIGUSR1, SIGUSR2, SIGWINCH])
                .expect("Unable to register signals");
        for sig in signals.forever() {
            match sig {
                SIGINT => {
                    tracing::info!(
                        "Termination signal {sig:?} received, all workers will be immediately terminated"
                    );

                    self.immediate_termination(&self.workers);
                }
                SIGTERM | SIGQUIT => {
                    tracing::info!(
                        "Termination signal {sig:?} received, all workers will be gracefully terminated"
                    );
                    self.graceful_termination(&self.workers);
                }
                _ => {
                    tracing::warn!("Signal {sig:?} is ignored by this application");
                }
            }
        }
    }

    /// Register and handle termination of all the tasks on the Python asynchronous event loop.
    /// We only register SIGQUIT and SIGINT since the main signal handling is done by Rust.
    fn register_python_signals(&self, py: Python, event_loop: PyObject) -> PyResult<()> {
        let locals = [("event_loop", event_loop)].into_py_dict(py);
        py.run(
            r#"
import asyncio
import logging
import functools
import signal

async def shutdown(sig, event_loop):
    logging.info(f"Caught signal {sig.name}, cancelling tasks registered on this loop")
    tasks = [task for task in asyncio.all_tasks() if task is not
             asyncio.current_task()]
    list(map(lambda task: task.cancel(), tasks))
    results = await asyncio.gather(*tasks, return_exceptions=True)
    logging.debug(f"Finished awaiting cancelled tasks, results: {results}")
    event_loop.stop()

event_loop.add_signal_handler(signal.SIGTERM,
    functools.partial(asyncio.ensure_future, shutdown(signal.SIGTERM, event_loop)))
event_loop.add_signal_handler(signal.SIGINT,
    functools.partial(asyncio.ensure_future, shutdown(signal.SIGINT, event_loop)))
"#,
            None,
            Some(locals),
        )?;
        Ok(())
    }
}

#[pymethods]
impl PyApp {
    /// Register a new context object inside the Rust state.
    #[pyo3(text_signature = "($self, context)")]
    pub fn context(&mut self, _py: Python, context: PyObject) {
        self.context = Some(Arc::new(context));
    }

    /// Start a single worker with its own Tokio and Python async runtime and provided shared socket.
    ///
    /// Python asynchronous loop needs to be started and handled during the lifetime of the process.
    /// First of all we install [uvloop] as the main Python event loop. Thanks to libuv, uvloop
    /// performs ~20% better than Python standard event loop in most benchmarks, while being 100%
    /// compatible.
    /// We retrieve the Python context object, if setup by the user calling [PyApp::context] method,
    /// generate the [PyState] structure and build the [aws_smithy_http_server::Router], filling
    /// it with the functions generated by `PythonServerOperationHandlerGenerator.kt`.
    /// At last we get a cloned reference to the underlying [socket2::Socket].
    ///
    /// Now that all the setup is done, we can start the two runtimes and run the [hyper] server.
    /// We spawn a thread with a new [tokio::runtime], setup the middlewares and finally block the
    /// thread on `hyper::serve`.
    /// The main process continues and at the end it is blocked on Python `loop.run_forever()`.
    ///
    /// [uvloop]: https://github.com/MagicStack/uvloop
    #[pyo3(text_signature = "($self, socket, worker_number)")]
    pub fn start_worker(
        &mut self,
        py: Python,
        socket: &PyCell<PySocket>,
        worker_number: isize,
    ) -> PyResult<()> {
        // Setup the Python asyncio loop to use `uvloop`.
        let asyncio = py.import("asyncio")?;
        let uvloop = py.import("uvloop")?;
        uvloop.call_method0("install")?;
        tracing::debug!("Setting up uvloop for current process");
        let event_loop = asyncio.call_method0("new_event_loop")?;
        asyncio.call_method1("set_event_loop", (event_loop,))?;
        // Create the `PyState` object from the Python context object.
        let context = self.context.clone().unwrap_or_else(|| Arc::new(py.None()));
        let state = PyState::new(context);
        // Build the router.
        let router: PyRouter = self.router.as_ref().expect("something").clone();
        // Clone the socket.
        let borrow = socket.try_borrow_mut()?;
        let held_socket: &PySocket = &*borrow;
        let raw_socket = held_socket.get_socket()?;
        // Register signals on the Python event loop.
        self.register_python_signals(py, event_loop.to_object(py))?;

        // Spawn a new background [std::thread] to run the application.
        tracing::debug!("Start the Tokio runtime in a background task");
        thread::spawn(move || {
            // The thread needs a new [tokio] runtime.
            let rt = runtime::Builder::new_multi_thread()
                .enable_all()
                .thread_name(format!("smithy-rs-tokio[{worker_number}]"))
                .build()
                .expect("Unable to start a new tokio runtime for this process");
            // Register operations into a Router, add middleware and start the `hyper` server,
            // all inside a [tokio] blocking function.
            rt.block_on(async move {
                tracing::debug!("Add middlewares to Rust Python router");
                let app = router
                    .0
                    .layer(ServiceBuilder::new().layer(AddExtensionLayer::new(state)));
                let server = hyper::Server::from_tcp(
                    raw_socket
                        .try_into()
                        .expect("Unable to convert socket2::Socket into std::net::TcpListener"),
                )
                .expect("Unable to create hyper server from shared socket")
                .serve(app.into_make_service());

                tracing::debug!("Started hyper server from shared socket");
                // Run forever-ish...
                if let Err(err) = server.await {
                    tracing::error!("server error: {}", err);
                }
            });
        });
        // Block on the event loop forever.
        tracing::debug!("Run and block on the Python event loop until a signal is received");
        event_loop.call_method0("run_forever")?;
        Ok(())
    }

    /// Register a new operation in the handlers map.
    ///
    /// The operation registered in the map are used inside the code-generated `router()` method
    /// and passed to the [aws_smithy_http_server::Router] as part of the operation handlers call.
    #[pyo3(text_signature = "($self, name, func)")]
    pub fn register_operation(&mut self, py: Python, name: &str, func: PyObject) -> PyResult<()> {
        let inspect = py.import("inspect")?;
        // Check if the function is a coroutine.
        // NOTE: that `asyncio.iscoroutine()` doesn't work here.
        let is_coroutine = inspect
            .call_method1("iscoroutinefunction", (&func,))?
            .extract::<bool>()?;
        // Find number of expected methods (a Pythzzon implementation could not accept the context).
        let func_args = inspect
            .call_method1("getargs", (func.getattr(py, "__code__")?,))?
            .getattr("args")?
            .extract::<Vec<String>>()?;
        let handler = PyHandler {
            func,
            is_coroutine,
            args: func_args.len(),
        };
        tracing::info!(
            "Registering function `{name}`, coroutine: {}, arguments: {}",
            handler.is_coroutine,
            handler.args,
        );
        // Insert the handler in the handlers map.
        self.handlers
            .inner
            .insert(String::from(name), Arc::new(handler));
        Ok(())
    }

    /// Main entrypoint: start the server on multiple workers.
    ///
    /// The multiprocessing server is achieved using the ability of a Python interpreter
    /// to clone and start itself as a new process.
    /// The shared sockets is created and Using the [multiprocessing::Process] module, multiple
    /// workers with the method `self.start_worker()` as target are started.
    ///
    /// [multiprocessing::Process]: https://docs.python.org/3/library/multiprocessing.html
    #[pyo3(text_signature = "($self, address, port, backlog, workers)")]
    pub fn run(
        &mut self,
        py: Python,
        address: Option<String>,
        port: Option<i32>,
        backlog: Option<i32>,
        workers: Option<usize>,
    ) -> PyResult<()> {
        // Setup multiprocessing environment, allowing connections and socket
        // sharing between processes.
        let mp = py.import("multiprocessing")?;
        // https://github.com/python/cpython/blob/f4c03484da59049eb62a9bf7777b963e2267d187/Lib/multiprocessing/context.py#L164
        mp.call_method0("allow_connection_pickling")?;
        let address = address.unwrap_or_else(|| String::from("127.0.0.1"));
        let port = port.unwrap_or(13734);
        let socket = PySocket::new(address, port, backlog)?;
        // Lock the workers mutex.
        let mut active_workers = self.workers.lock();
        // Register the main signal handler.
        // TODO(move from num_cpus to thread::available_parallelism after MSRV is 1.60)
        // Start all the workers as new Python processes and store the in the `workers` attribute.
        for idx in 1..workers.unwrap_or_else(num_cpus::get) + 1 {
            let sock = socket.try_clone()?;
            let process = mp.getattr("Process")?;
            let handle = process.call1((
                py.None(),
                self.clone().into_py(py).getattr(py, "start_worker")?,
                format!("smithy-rs-worker[{idx}]"),
                (sock.into_py(py), idx),
            ))?;
            handle.call_method0("start")?;
            active_workers.push(handle.to_object(py));
        }
        // Unlock the workers mutex.
        drop(active_workers);
        tracing::info!("Rust Python server started successfully");
        self.block_on_rust_signals();
        Ok(())
    }
}