1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
/*
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0
*/
//! Test utilities for time and sleep
use std::sync::{Arc, Mutex};
use std::time::{Duration, SystemTime};
use tokio::sync::oneshot;
use tokio::sync::Barrier;
use tokio::time::timeout;
use crate::rt::sleep::{AsyncSleep, Sleep};
use crate::time::{SharedTimeSource, TimeSource};
/// Manually controlled time source
#[derive(Debug, Clone)]
pub struct ManualTimeSource {
start_time: SystemTime,
log: Arc<Mutex<Vec<Duration>>>,
}
impl ManualTimeSource {
/// Get the number of seconds since the UNIX Epoch as an f64.
///
/// ## Panics
///
/// This will panic if `self.now()` returns a time that's before the UNIX Epoch.
pub fn seconds_since_unix_epoch(&self) -> f64 {
self.now()
.duration_since(SystemTime::UNIX_EPOCH)
.unwrap()
.as_secs_f64()
}
/// Creates a new [`ManualTimeSource`]
pub fn new(start_time: SystemTime) -> ManualTimeSource {
Self {
start_time,
log: Default::default(),
}
}
/// Advances the time of this time source by `duration`.
pub fn advance(&self, duration: Duration) -> SystemTime {
let mut log = self.log.lock().unwrap();
log.push(duration);
self._now(&log)
}
fn _now(&self, log: &[Duration]) -> SystemTime {
self.start_time + log.iter().sum::<Duration>()
}
/// Sets the `time` of this manual time source.
///
/// # Panics
/// This function panics if `time` < `now()`
pub fn set_time(&self, time: SystemTime) {
let mut log = self.log.lock().unwrap();
let now = self._now(&log);
if time < now {
panic!("Cannot move time backwards!");
}
log.push(time.duration_since(now).unwrap());
}
}
impl TimeSource for ManualTimeSource {
fn now(&self) -> SystemTime {
self._now(&self.log.lock().unwrap())
}
}
/// A sleep implementation where calls to [`AsyncSleep::sleep`] block until [`SleepGate::expect_sleep`] is called
///
/// Create a [`ControlledSleep`] with [`controlled_time_and_sleep`]
#[derive(Debug, Clone)]
pub struct ControlledSleep {
barrier: Arc<Barrier>,
log: Arc<Mutex<Vec<Duration>>>,
duration: Arc<Mutex<Option<Duration>>>,
advance_guard: Arc<Mutex<Option<oneshot::Sender<()>>>>,
}
/// Gate that allows [`ControlledSleep`] to advance.
///
/// See [`controlled_time_and_sleep`] for more details
pub struct SleepGate {
gate: Arc<Barrier>,
pending: Arc<Mutex<Option<Duration>>>,
advance_guard: Arc<Mutex<Option<oneshot::Sender<()>>>>,
}
impl ControlledSleep {
fn new(log: Arc<Mutex<Vec<Duration>>>) -> (ControlledSleep, SleepGate) {
let gate = Arc::new(Barrier::new(2));
let pending = Arc::new(Mutex::new(None));
let advance_guard: Arc<Mutex<Option<oneshot::Sender<()>>>> = Default::default();
(
ControlledSleep {
barrier: gate.clone(),
log,
duration: pending.clone(),
advance_guard: advance_guard.clone(),
},
SleepGate {
gate,
pending,
advance_guard,
},
)
}
}
/// A sleep implementation where calls to [`AsyncSleep::sleep`] will complete instantly.
///
/// Create a [`InstantSleep`] with [`instant_time_and_sleep`]
#[derive(Debug, Clone)]
pub struct InstantSleep {
log: Arc<Mutex<Vec<Duration>>>,
}
impl AsyncSleep for InstantSleep {
fn sleep(&self, duration: Duration) -> Sleep {
let log = self.log.clone();
Sleep::new(async move {
log.lock().unwrap().push(duration);
})
}
}
impl InstantSleep {
/// Given a shared log for sleep durations, create a new `InstantSleep`.
pub fn new(log: Arc<Mutex<Vec<Duration>>>) -> Self {
Self { log }
}
/// Create an `InstantSleep` without passing in a shared log.
pub fn unlogged() -> Self {
Self {
log: Default::default(),
}
}
/// Return the sleep durations that were logged by this `InstantSleep`.
pub fn logs(&self) -> Vec<Duration> {
self.log.lock().unwrap().iter().cloned().collect()
}
/// Return the total sleep duration that was logged by this `InstantSleep`.
pub fn total_duration(&self) -> Duration {
self.log.lock().unwrap().iter().sum()
}
}
/// Guard returned from [`SleepGate::expect_sleep`]
///
/// # Examples
/// ```rust
/// # use std::sync::Arc;
/// use std::sync::atomic::{AtomicUsize, Ordering};
/// # async {
/// use std::time::{Duration, UNIX_EPOCH};
/// use aws_smithy_async::rt::sleep::AsyncSleep;
/// use aws_smithy_async::test_util::controlled_time_and_sleep;
/// let (time, sleep, mut gate) = controlled_time_and_sleep(UNIX_EPOCH);
/// let progress = Arc::new(AtomicUsize::new(0));
/// let task_progress = progress.clone();
/// let task = tokio::spawn(async move {
/// let progress = task_progress;
/// progress.store(1, Ordering::Release);
/// sleep.sleep(Duration::from_secs(1)).await;
/// progress.store(2, Ordering::Release);
/// sleep.sleep(Duration::from_secs(2)).await;
/// });
/// while progress.load(Ordering::Acquire) != 1 {}
/// let guard = gate.expect_sleep().await;
/// assert_eq!(guard.duration(), Duration::from_secs(1));
/// assert_eq!(progress.load(Ordering::Acquire), 1);
/// guard.allow_progress();
///
/// let guard = gate.expect_sleep().await;
/// assert_eq!(progress.load(Ordering::Acquire), 2);
/// assert_eq!(task.is_finished(), false);
/// guard.allow_progress();
/// task.await.expect("successful completion");
/// # };
/// ```
pub struct CapturedSleep<'a>(oneshot::Sender<()>, &'a SleepGate, Duration);
impl CapturedSleep<'_> {
/// Allow the calling code to advance past the call to [`AsyncSleep::sleep`]
///
/// In order to facilitate testing with no flakiness, the future returned by the call to `sleep`
/// will not resolve until [`CapturedSleep`] is dropped or this method is called.
///
/// ```rust
/// use std::time::Duration;
/// use aws_smithy_async::rt::sleep::AsyncSleep;
/// async fn do_something(sleep: &dyn AsyncSleep) {
/// println!("before sleep");
/// sleep.sleep(Duration::from_secs(1)).await;
/// println!("after sleep");
/// }
/// ```
///
/// To be specific, when `do_something` is called, the code will advance to `sleep.sleep`.
/// When [`SleepGate::expect_sleep`] is called, the 1 second sleep will be captured, but `after sleep`
/// WILL NOT be printed, until `allow_progress` is called.
pub fn allow_progress(self) {
drop(self)
}
/// Duration in the call to [`AsyncSleep::sleep`]
pub fn duration(&self) -> Duration {
self.2
}
}
impl AsRef<Duration> for CapturedSleep<'_> {
fn as_ref(&self) -> &Duration {
&self.2
}
}
impl SleepGate {
/// Expect the time source to sleep
///
/// This returns the duration that was slept and a [`CapturedSleep`]. The drop guard is used
/// to precisely control
pub async fn expect_sleep(&mut self) -> CapturedSleep<'_> {
timeout(Duration::from_secs(1), self.gate.wait())
.await
.expect("timeout");
let dur = self
.pending
.lock()
.unwrap()
.take()
.unwrap_or(Duration::from_secs(123456));
let guard = CapturedSleep(
self.advance_guard.lock().unwrap().take().unwrap(),
self,
dur,
);
guard
}
}
impl AsyncSleep for ControlledSleep {
fn sleep(&self, duration: Duration) -> Sleep {
let barrier = self.barrier.clone();
let log = self.log.clone();
let pending = self.duration.clone();
let drop_guard = self.advance_guard.clone();
Sleep::new(async move {
// 1. write the duration into the shared mutex
assert!(pending.lock().unwrap().is_none());
*pending.lock().unwrap() = Some(duration);
let (tx, rx) = oneshot::channel();
*drop_guard.lock().unwrap() = Some(tx);
// 2. first wait on the barrier—this is how we wait for an invocation of `expect_sleep`
barrier.wait().await;
log.lock().unwrap().push(duration);
let _ = dbg!(rx.await);
})
}
}
/// Returns a trio of tools to test interactions with time
///
/// 1. [`ManualTimeSource`] which starts at a specific time and only advances when `sleep` is called.
/// It MUST be paired with [`ControlledSleep`] in order to function.
pub fn controlled_time_and_sleep(
start_time: SystemTime,
) -> (ManualTimeSource, ControlledSleep, SleepGate) {
let log = Arc::new(Mutex::new(vec![]));
let (sleep, gate) = ControlledSleep::new(log.clone());
(ManualTimeSource { start_time, log }, sleep, gate)
}
/// Returns a duo of tools to test interactions with time. Sleeps will end instantly, but the
/// desired length of the sleeps will be recorded for later verification.
pub fn instant_time_and_sleep(start_time: SystemTime) -> (ManualTimeSource, InstantSleep) {
let log = Arc::new(Mutex::new(vec![]));
let sleep = InstantSleep::new(log.clone());
(ManualTimeSource { start_time, log }, sleep)
}
impl TimeSource for SystemTime {
fn now(&self) -> SystemTime {
*self
}
}
impl From<SystemTime> for SharedTimeSource {
fn from(value: SystemTime) -> Self {
SharedTimeSource::new(value)
}
}
impl From<ManualTimeSource> for SharedTimeSource {
fn from(value: ManualTimeSource) -> Self {
SharedTimeSource::new(value)
}
}
#[cfg(test)]
mod test {
use crate::rt::sleep::AsyncSleep;
use crate::test_util::controlled_time_and_sleep;
use crate::time::TimeSource;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::Arc;
use tokio::task::yield_now;
use tokio::time::timeout;
#[tokio::test]
async fn test_sleep_gate() {
use std::time::{Duration, UNIX_EPOCH};
let start = UNIX_EPOCH;
let (time, sleep, mut gate) = controlled_time_and_sleep(UNIX_EPOCH);
let progress = Arc::new(AtomicUsize::new(0));
let task_progress = progress.clone();
let task = tokio::spawn(async move {
assert_eq!(time.now(), start);
let progress = task_progress;
progress.store(1, Ordering::Release);
sleep.sleep(Duration::from_secs(1)).await;
assert_eq!(time.now(), start + Duration::from_secs(1));
progress.store(2, Ordering::Release);
sleep.sleep(Duration::from_secs(2)).await;
assert_eq!(time.now(), start + Duration::from_secs(3));
});
while progress.load(Ordering::Acquire) != 1 {
yield_now().await
}
let guard = gate.expect_sleep().await;
assert_eq!(guard.duration(), Duration::from_secs(1));
assert_eq!(progress.load(Ordering::Acquire), 1);
guard.allow_progress();
let guard = gate.expect_sleep().await;
assert_eq!(progress.load(Ordering::Acquire), 2);
assert!(!task.is_finished(), "task should not be finished");
guard.allow_progress();
timeout(Duration::from_secs(1), task)
.await
.expect("no timeout")
.expect("successful completion");
}
}