1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
/*
 * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * SPDX-License-Identifier: Apache-2.0
 */

//! Test utilities for time and sleep

use std::sync::{Arc, Mutex};
use std::time::{Duration, SystemTime};

use tokio::sync::oneshot;
use tokio::sync::Barrier;
use tokio::time::timeout;

use crate::rt::sleep::{AsyncSleep, Sleep};
use crate::time::{SharedTimeSource, TimeSource};

/// Manually controlled time source
#[derive(Debug, Clone)]
pub struct ManualTimeSource {
    start_time: SystemTime,
    log: Arc<Mutex<Vec<Duration>>>,
}

impl ManualTimeSource {
    /// Get the number of seconds since the UNIX Epoch as an f64.
    ///
    /// ## Panics
    ///
    /// This will panic if `self.now()` returns a time that's before the UNIX Epoch.
    pub fn seconds_since_unix_epoch(&self) -> f64 {
        self.now()
            .duration_since(SystemTime::UNIX_EPOCH)
            .unwrap()
            .as_secs_f64()
    }

    /// Creates a new [`ManualTimeSource`]
    pub fn new(start_time: SystemTime) -> ManualTimeSource {
        Self {
            start_time,
            log: Default::default(),
        }
    }

    /// Advances the time of this time source by `duration`.
    pub fn advance(&self, duration: Duration) -> SystemTime {
        let mut log = self.log.lock().unwrap();
        log.push(duration);
        self._now(&log)
    }

    fn _now(&self, log: &[Duration]) -> SystemTime {
        self.start_time + log.iter().sum::<Duration>()
    }

    /// Sets the `time` of this manual time source.
    ///
    /// # Panics
    /// This function panics if `time` < `now()`
    pub fn set_time(&self, time: SystemTime) {
        let mut log = self.log.lock().unwrap();
        let now = self._now(&log);
        if time < now {
            panic!("Cannot move time backwards!");
        }
        log.push(time.duration_since(now).unwrap());
    }
}

impl TimeSource for ManualTimeSource {
    fn now(&self) -> SystemTime {
        self._now(&self.log.lock().unwrap())
    }
}

/// A sleep implementation where calls to [`AsyncSleep::sleep`] block until [`SleepGate::expect_sleep`] is called
///
/// Create a [`ControlledSleep`] with [`controlled_time_and_sleep`]
#[derive(Debug, Clone)]
pub struct ControlledSleep {
    barrier: Arc<Barrier>,
    log: Arc<Mutex<Vec<Duration>>>,
    duration: Arc<Mutex<Option<Duration>>>,
    advance_guard: Arc<Mutex<Option<oneshot::Sender<()>>>>,
}

/// Gate that allows [`ControlledSleep`] to advance.
///
/// See [`controlled_time_and_sleep`] for more details
pub struct SleepGate {
    gate: Arc<Barrier>,
    pending: Arc<Mutex<Option<Duration>>>,
    advance_guard: Arc<Mutex<Option<oneshot::Sender<()>>>>,
}

impl ControlledSleep {
    fn new(log: Arc<Mutex<Vec<Duration>>>) -> (ControlledSleep, SleepGate) {
        let gate = Arc::new(Barrier::new(2));
        let pending = Arc::new(Mutex::new(None));
        let advance_guard: Arc<Mutex<Option<oneshot::Sender<()>>>> = Default::default();
        (
            ControlledSleep {
                barrier: gate.clone(),
                log,
                duration: pending.clone(),
                advance_guard: advance_guard.clone(),
            },
            SleepGate {
                gate,
                pending,
                advance_guard,
            },
        )
    }
}

/// A sleep implementation where calls to [`AsyncSleep::sleep`] will complete instantly.
///
/// Create a [`InstantSleep`] with [`instant_time_and_sleep`]
#[derive(Debug, Clone)]
pub struct InstantSleep {
    log: Arc<Mutex<Vec<Duration>>>,
}

impl AsyncSleep for InstantSleep {
    fn sleep(&self, duration: Duration) -> Sleep {
        let log = self.log.clone();
        Sleep::new(async move {
            log.lock().unwrap().push(duration);
        })
    }
}

impl InstantSleep {
    /// Given a shared log for sleep durations, create a new `InstantSleep`.
    pub fn new(log: Arc<Mutex<Vec<Duration>>>) -> Self {
        Self { log }
    }

    /// Create an `InstantSleep` without passing in a shared log.
    pub fn unlogged() -> Self {
        Self {
            log: Default::default(),
        }
    }

    /// Return the sleep durations that were logged by this `InstantSleep`.
    pub fn logs(&self) -> Vec<Duration> {
        self.log.lock().unwrap().iter().cloned().collect()
    }

    /// Return the total sleep duration that was logged by this `InstantSleep`.
    pub fn total_duration(&self) -> Duration {
        self.log.lock().unwrap().iter().sum()
    }
}

/// Guard returned from [`SleepGate::expect_sleep`]
///
/// # Examples
/// ```rust
/// # use std::sync::Arc;
/// use std::sync::atomic::{AtomicUsize, Ordering};
/// # async {
/// use std::time::{Duration, UNIX_EPOCH};
/// use aws_smithy_async::rt::sleep::AsyncSleep;
/// use aws_smithy_async::test_util::controlled_time_and_sleep;
/// let (time, sleep, mut gate) = controlled_time_and_sleep(UNIX_EPOCH);
/// let progress = Arc::new(AtomicUsize::new(0));
/// let task_progress = progress.clone();
/// let task = tokio::spawn(async move {
///     let progress = task_progress;
///     progress.store(1, Ordering::Release);
///     sleep.sleep(Duration::from_secs(1)).await;
///     progress.store(2, Ordering::Release);
///     sleep.sleep(Duration::from_secs(2)).await;
/// });
/// while progress.load(Ordering::Acquire) != 1 {}
/// let guard = gate.expect_sleep().await;
/// assert_eq!(guard.duration(), Duration::from_secs(1));
/// assert_eq!(progress.load(Ordering::Acquire), 1);
/// guard.allow_progress();
///
/// let guard = gate.expect_sleep().await;
/// assert_eq!(progress.load(Ordering::Acquire), 2);
/// assert_eq!(task.is_finished(), false);
/// guard.allow_progress();
/// task.await.expect("successful completion");
/// # };
/// ```
pub struct CapturedSleep<'a>(oneshot::Sender<()>, &'a SleepGate, Duration);
impl CapturedSleep<'_> {
    /// Allow the calling code to advance past the call to [`AsyncSleep::sleep`]
    ///
    /// In order to facilitate testing with no flakiness, the future returned by the call to `sleep`
    /// will not resolve until [`CapturedSleep`] is dropped or this method is called.
    ///
    /// ```rust
    /// use std::time::Duration;
    /// use aws_smithy_async::rt::sleep::AsyncSleep;
    /// async fn do_something(sleep: &dyn AsyncSleep) {
    ///   println!("before sleep");
    ///   sleep.sleep(Duration::from_secs(1)).await;
    ///   println!("after sleep");
    /// }
    /// ```
    ///
    /// To be specific, when `do_something` is called, the code will advance to `sleep.sleep`.
    /// When [`SleepGate::expect_sleep`] is called, the 1 second sleep will be captured, but `after sleep`
    /// WILL NOT be printed, until `allow_progress` is called.
    pub fn allow_progress(self) {
        drop(self)
    }

    /// Duration in the call to [`AsyncSleep::sleep`]
    pub fn duration(&self) -> Duration {
        self.2
    }
}

impl AsRef<Duration> for CapturedSleep<'_> {
    fn as_ref(&self) -> &Duration {
        &self.2
    }
}

impl SleepGate {
    /// Expect the time source to sleep
    ///
    /// This returns the duration that was slept and a [`CapturedSleep`]. The drop guard is used
    /// to precisely control
    pub async fn expect_sleep(&mut self) -> CapturedSleep<'_> {
        timeout(Duration::from_secs(1), self.gate.wait())
            .await
            .expect("timeout");
        let dur = self
            .pending
            .lock()
            .unwrap()
            .take()
            .unwrap_or(Duration::from_secs(123456));
        let guard = CapturedSleep(
            self.advance_guard.lock().unwrap().take().unwrap(),
            self,
            dur,
        );
        guard
    }
}

impl AsyncSleep for ControlledSleep {
    fn sleep(&self, duration: Duration) -> Sleep {
        let barrier = self.barrier.clone();
        let log = self.log.clone();
        let pending = self.duration.clone();
        let drop_guard = self.advance_guard.clone();
        Sleep::new(async move {
            // 1. write the duration into the shared mutex
            assert!(pending.lock().unwrap().is_none());
            *pending.lock().unwrap() = Some(duration);
            let (tx, rx) = oneshot::channel();
            *drop_guard.lock().unwrap() = Some(tx);
            // 2. first wait on the barrier—this is how we wait for an invocation of `expect_sleep`
            barrier.wait().await;
            log.lock().unwrap().push(duration);
            let _ = dbg!(rx.await);
        })
    }
}

/// Returns a trio of tools to test interactions with time
///
/// 1. [`ManualTimeSource`] which starts at a specific time and only advances when `sleep` is called.
/// It MUST be paired with [`ControlledSleep`] in order to function.
pub fn controlled_time_and_sleep(
    start_time: SystemTime,
) -> (ManualTimeSource, ControlledSleep, SleepGate) {
    let log = Arc::new(Mutex::new(vec![]));
    let (sleep, gate) = ControlledSleep::new(log.clone());
    (ManualTimeSource { start_time, log }, sleep, gate)
}

/// Returns a duo of tools to test interactions with time. Sleeps will end instantly, but the
/// desired length of the sleeps will be recorded for later verification.
pub fn instant_time_and_sleep(start_time: SystemTime) -> (ManualTimeSource, InstantSleep) {
    let log = Arc::new(Mutex::new(vec![]));
    let sleep = InstantSleep::new(log.clone());
    (ManualTimeSource { start_time, log }, sleep)
}

impl TimeSource for SystemTime {
    fn now(&self) -> SystemTime {
        *self
    }
}

impl From<SystemTime> for SharedTimeSource {
    fn from(value: SystemTime) -> Self {
        SharedTimeSource::new(value)
    }
}

impl From<ManualTimeSource> for SharedTimeSource {
    fn from(value: ManualTimeSource) -> Self {
        SharedTimeSource::new(value)
    }
}

#[cfg(test)]
mod test {
    use crate::rt::sleep::AsyncSleep;
    use crate::test_util::controlled_time_and_sleep;
    use crate::time::TimeSource;
    use std::sync::atomic::{AtomicUsize, Ordering};
    use std::sync::Arc;
    use tokio::task::yield_now;
    use tokio::time::timeout;

    #[tokio::test]
    async fn test_sleep_gate() {
        use std::time::{Duration, UNIX_EPOCH};
        let start = UNIX_EPOCH;
        let (time, sleep, mut gate) = controlled_time_and_sleep(UNIX_EPOCH);
        let progress = Arc::new(AtomicUsize::new(0));
        let task_progress = progress.clone();
        let task = tokio::spawn(async move {
            assert_eq!(time.now(), start);
            let progress = task_progress;
            progress.store(1, Ordering::Release);
            sleep.sleep(Duration::from_secs(1)).await;
            assert_eq!(time.now(), start + Duration::from_secs(1));
            progress.store(2, Ordering::Release);
            sleep.sleep(Duration::from_secs(2)).await;
            assert_eq!(time.now(), start + Duration::from_secs(3));
        });
        while progress.load(Ordering::Acquire) != 1 {
            yield_now().await
        }
        let guard = gate.expect_sleep().await;
        assert_eq!(guard.duration(), Duration::from_secs(1));
        assert_eq!(progress.load(Ordering::Acquire), 1);
        guard.allow_progress();

        let guard = gate.expect_sleep().await;
        assert_eq!(progress.load(Ordering::Acquire), 2);
        assert!(!task.is_finished(), "task should not be finished");
        guard.allow_progress();
        timeout(Duration::from_secs(1), task)
            .await
            .expect("no timeout")
            .expect("successful completion");
    }
}