aws_sdk_timestreamwrite/lib.rs
1#![allow(deprecated)]
2#![allow(unknown_lints)]
3#![allow(clippy::module_inception)]
4#![allow(clippy::upper_case_acronyms)]
5#![allow(clippy::large_enum_variant)]
6#![allow(clippy::wrong_self_convention)]
7#![allow(clippy::should_implement_trait)]
8#![allow(clippy::disallowed_names)]
9#![allow(clippy::vec_init_then_push)]
10#![allow(clippy::type_complexity)]
11#![allow(clippy::needless_return)]
12#![allow(clippy::derive_partial_eq_without_eq)]
13#![allow(clippy::result_large_err)]
14#![allow(clippy::unnecessary_map_on_constructor)]
15#![allow(clippy::deprecated_semver)]
16#![allow(rustdoc::bare_urls)]
17#![allow(rustdoc::redundant_explicit_links)]
18#![allow(rustdoc::broken_intra_doc_links)]
19#![allow(rustdoc::invalid_html_tags)]
20#![forbid(unsafe_code)]
21#![warn(missing_docs)]
22#![cfg_attr(docsrs, feature(doc_cfg))]
23//! Amazon Timestream is a fast, scalable, fully managed time-series database service that makes it easy to store and analyze trillions of time-series data points per day. With Timestream, you can easily store and analyze IoT sensor data to derive insights from your IoT applications. You can analyze industrial telemetry to streamline equipment management and maintenance. You can also store and analyze log data and metrics to improve the performance and availability of your applications.
24//!
25//! Timestream is built from the ground up to effectively ingest, process, and store time-series data. It organizes data to optimize query processing. It automatically scales based on the volume of data ingested and on the query volume to ensure you receive optimal performance while inserting and querying data. As your data grows over time, Timestream’s adaptive query processing engine spans across storage tiers to provide fast analysis while reducing costs.
26//!
27//! ## Getting Started
28//!
29//! > Examples are available for many services and operations, check out the
30//! > [usage examples](https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1).
31//!
32//! The SDK provides one crate per AWS service. You must add [Tokio](https://crates.io/crates/tokio)
33//! as a dependency within your Rust project to execute asynchronous code. To add `aws-sdk-timestreamwrite` to
34//! your project, add the following to your **Cargo.toml** file:
35//!
36//! ```toml
37//! [dependencies]
38//! aws-config = { version = "1.1.7", features = ["behavior-version-latest"] }
39//! aws-sdk-timestreamwrite = "1.95.0"
40//! tokio = { version = "1", features = ["full"] }
41//! ```
42//!
43//! Then in code, a client can be created with the following:
44//!
45//! ```rust,no_run
46//! use aws_sdk_timestreamwrite as timestreamwrite;
47//!
48//! #[::tokio::main]
49//! async fn main() -> Result<(), timestreamwrite::Error> {
50//! let config = aws_config::load_from_env().await;
51//! // You MUST call `with_endpoint_discovery_enabled` to produce a working client for this service.
52//! let client = aws_sdk_timestreamwrite::Client::new(&config).with_endpoint_discovery_enabled().await;
53//!
54//! // ... make some calls with the client
55//!
56//! Ok(())
57//! }
58//! ```
59//!
60//! See the [client documentation](https://docs.rs/aws-sdk-timestreamwrite/latest/aws_sdk_timestreamwrite/client/struct.Client.html)
61//! for information on what calls can be made, and the inputs and outputs for each of those calls.
62//!
63//! ## Using the SDK
64//!
65//! Until the SDK is released, we will be adding information about using the SDK to the
66//! [Developer Guide](https://docs.aws.amazon.com/sdk-for-rust/latest/dg/welcome.html). Feel free to suggest
67//! additional sections for the guide by opening an issue and describing what you are trying to do.
68//!
69//! ## Getting Help
70//!
71//! * [GitHub discussions](https://github.com/awslabs/aws-sdk-rust/discussions) - For ideas, RFCs & general questions
72//! * [GitHub issues](https://github.com/awslabs/aws-sdk-rust/issues/new/choose) - For bug reports & feature requests
73//! * [Generated Docs (latest version)](https://awslabs.github.io/aws-sdk-rust/)
74//! * [Usage examples](https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1)
75//!
76//!
77//! # Crate Organization
78//!
79//! The entry point for most customers will be [`Client`], which exposes one method for each API
80//! offered by Amazon Timestream Write. The return value of each of these methods is a "fluent builder",
81//! where the different inputs for that API are added by builder-style function call chaining,
82//! followed by calling `send()` to get a [`Future`](std::future::Future) that will result in
83//! either a successful output or a [`SdkError`](crate::error::SdkError).
84//!
85//! Some of these API inputs may be structs or enums to provide more complex structured information.
86//! These structs and enums live in [`types`](crate::types). There are some simpler types for
87//! representing data such as date times or binary blobs that live in [`primitives`](crate::primitives).
88//!
89//! All types required to configure a client via the [`Config`](crate::Config) struct live
90//! in [`config`](crate::config).
91//!
92//! The [`operation`](crate::operation) module has a submodule for every API, and in each submodule
93//! is the input, output, and error type for that API, as well as builders to construct each of those.
94//!
95//! There is a top-level [`Error`](crate::Error) type that encompasses all the errors that the
96//! client can return. Any other error type can be converted to this `Error` type via the
97//! [`From`](std::convert::From) trait.
98//!
99//! The other modules within this crate are not required for normal usage.
100
101// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
102pub use error_meta::Error;
103
104#[doc(inline)]
105pub use config::Config;
106
107/// Client for calling Amazon Timestream Write.
108/// ## Constructing a `Client`
109///
110/// A [`Config`] is required to construct a client. For most use cases, the [`aws-config`]
111/// crate should be used to automatically resolve this config using
112/// [`aws_config::load_from_env()`], since this will resolve an [`SdkConfig`] which can be shared
113/// across multiple different AWS SDK clients. This config resolution process can be customized
114/// by calling [`aws_config::from_env()`] instead, which returns a [`ConfigLoader`] that uses
115/// the [builder pattern] to customize the default config.
116///
117/// In the simplest case, creating a client looks as follows:
118/// ```rust,no_run
119/// # async fn wrapper() {
120/// let config = aws_config::load_from_env().await;
121/// // You MUST call `with_endpoint_discovery_enabled` to produce a working client for this service.
122/// let client = aws_sdk_timestreamwrite::Client::new(&config).with_endpoint_discovery_enabled().await;
123/// # }
124/// ```
125///
126/// Occasionally, SDKs may have additional service-specific values that can be set on the [`Config`] that
127/// is absent from [`SdkConfig`], or slightly different settings for a specific client may be desired.
128/// The [`Builder`](crate::config::Builder) struct implements `From<&SdkConfig>`, so setting these specific settings can be
129/// done as follows:
130///
131/// ```rust,no_run
132/// # async fn wrapper() {
133/// let sdk_config = ::aws_config::load_from_env().await;
134/// let config = aws_sdk_timestreamwrite::config::Builder::from(&sdk_config)
135/// # /*
136/// .some_service_specific_setting("value")
137/// # */
138/// .build();
139/// # }
140/// ```
141///
142/// See the [`aws-config` docs] and [`Config`] for more information on customizing configuration.
143///
144/// _Note:_ Client construction is expensive due to connection thread pool initialization, and should
145/// be done once at application start-up.
146///
147/// [`Config`]: crate::Config
148/// [`ConfigLoader`]: https://docs.rs/aws-config/*/aws_config/struct.ConfigLoader.html
149/// [`SdkConfig`]: https://docs.rs/aws-config/*/aws_config/struct.SdkConfig.html
150/// [`aws-config` docs]: https://docs.rs/aws-config/*
151/// [`aws-config`]: https://crates.io/crates/aws-config
152/// [`aws_config::from_env()`]: https://docs.rs/aws-config/*/aws_config/fn.from_env.html
153/// [`aws_config::load_from_env()`]: https://docs.rs/aws-config/*/aws_config/fn.load_from_env.html
154/// [builder pattern]: https://rust-lang.github.io/api-guidelines/type-safety.html#builders-enable-construction-of-complex-values-c-builder
155/// # Using the `Client`
156///
157/// A client has a function for every operation that can be performed by the service.
158/// For example, the [`CreateBatchLoadTask`](crate::operation::create_batch_load_task) operation has
159/// a [`Client::create_batch_load_task`], function which returns a builder for that operation.
160/// The fluent builder ultimately has a `send()` function that returns an async future that
161/// returns a result, as illustrated below:
162///
163/// ```rust,ignore
164/// let result = client.create_batch_load_task()
165/// .client_token("example")
166/// .send()
167/// .await;
168/// ```
169///
170/// The underlying HTTP requests that get made by this can be modified with the `customize_operation`
171/// function on the fluent builder. See the [`customize`](crate::client::customize) module for more
172/// information.
173pub mod client;
174
175/// Configuration for Amazon Timestream Write.
176pub mod config;
177
178/// Common errors and error handling utilities.
179pub mod error;
180
181mod error_meta;
182
183/// Information about this crate.
184pub mod meta;
185
186/// All operations that this crate can perform.
187pub mod operation;
188
189/// Primitives such as `Blob` or `DateTime` used by other types.
190pub mod primitives;
191
192/// Data structures used by operation inputs/outputs.
193pub mod types;
194
195pub(crate) mod client_idempotency_token;
196
197pub mod endpoint_discovery;
198
199mod idempotency_token;
200
201mod observability_feature;
202
203pub(crate) mod protocol_serde;
204
205mod sdk_feature_tracker;
206
207mod serialization_settings;
208
209mod endpoint_lib;
210
211mod lens;
212
213mod serde_util;
214
215mod json_errors;
216
217#[doc(inline)]
218pub use client::Client;