aws_sdk_sagemakerruntime/operation/invoke_endpoint/_invoke_endpoint_input.rs
1// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
2#[allow(missing_docs)] // documentation missing in model
3#[non_exhaustive]
4#[derive(::std::clone::Clone, ::std::cmp::PartialEq)]
5pub struct InvokeEndpointInput {
6 /// <p>The name of the endpoint that you specified when you created the endpoint using the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpoint.html">CreateEndpoint</a> API.</p>
7 pub endpoint_name: ::std::option::Option<::std::string::String>,
8 /// <p>Provides input data, in the format specified in the <code>ContentType</code> request header. Amazon SageMaker AI passes all of the data in the body to the model.</p>
9 /// <p>For information about the format of the request body, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html">Common Data Formats-Inference</a>.</p>
10 pub body: ::std::option::Option<::aws_smithy_types::Blob>,
11 /// <p>The MIME type of the input data in the request body.</p>
12 pub content_type: ::std::option::Option<::std::string::String>,
13 /// <p>The desired MIME type of the inference response from the model container.</p>
14 pub accept: ::std::option::Option<::std::string::String>,
15 /// <p>Provides additional information about a request for an inference submitted to a model hosted at an Amazon SageMaker AI endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to provide an ID that you can use to track a request or to provide other metadata that a service endpoint was programmed to process. The value must consist of no more than 1024 visible US-ASCII characters as specified in <a href="https://datatracker.ietf.org/doc/html/rfc7230#section-3.2.6">Section 3.3.6. Field Value Components</a> of the Hypertext Transfer Protocol (HTTP/1.1).</p>
16 /// <p>The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with <code>Trace ID:</code> in your post-processing function.</p>
17 /// <p>This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker AI Python SDK.</p>
18 pub custom_attributes: ::std::option::Option<::std::string::String>,
19 /// <p>The model to request for inference when invoking a multi-model endpoint.</p>
20 pub target_model: ::std::option::Option<::std::string::String>,
21 /// <p>Specify the production variant to send the inference request to when invoking an endpoint that is running two or more variants. Note that this parameter overrides the default behavior for the endpoint, which is to distribute the invocation traffic based on the variant weights.</p>
22 /// <p>For information about how to use variant targeting to perform a/b testing, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-ab-testing.html">Test models in production</a></p>
23 pub target_variant: ::std::option::Option<::std::string::String>,
24 /// <p>If the endpoint hosts multiple containers and is configured to use direct invocation, this parameter specifies the host name of the container to invoke.</p>
25 pub target_container_hostname: ::std::option::Option<::std::string::String>,
26 /// <p>If you provide a value, it is added to the captured data when you enable data capture on the endpoint. For information about data capture, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-capture.html">Capture Data</a>.</p>
27 pub inference_id: ::std::option::Option<::std::string::String>,
28 /// <p>An optional JMESPath expression used to override the <code>EnableExplanations</code> parameter of the <code>ClarifyExplainerConfig</code> API. See the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-online-explainability-create-endpoint.html#clarify-online-explainability-create-endpoint-enable">EnableExplanations</a> section in the developer guide for more information.</p>
29 pub enable_explanations: ::std::option::Option<::std::string::String>,
30 /// <p>If the endpoint hosts one or more inference components, this parameter specifies the name of inference component to invoke.</p>
31 pub inference_component_name: ::std::option::Option<::std::string::String>,
32 /// <p>Creates a stateful session or identifies an existing one. You can do one of the following:</p>
33 /// <ul>
34 /// <li>
35 /// <p>Create a stateful session by specifying the value <code>NEW_SESSION</code>.</p></li>
36 /// <li>
37 /// <p>Send your request to an existing stateful session by specifying the ID of that session.</p></li>
38 /// </ul>
39 /// <p>With a stateful session, you can send multiple requests to a stateful model. When you create a session with a stateful model, the model must create the session ID and set the expiration time. The model must also provide that information in the response to your request. You can get the ID and timestamp from the <code>NewSessionId</code> response parameter. For any subsequent request where you specify that session ID, SageMaker AI routes the request to the same instance that supports the session.</p>
40 pub session_id: ::std::option::Option<::std::string::String>,
41}
42impl InvokeEndpointInput {
43 /// <p>The name of the endpoint that you specified when you created the endpoint using the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpoint.html">CreateEndpoint</a> API.</p>
44 pub fn endpoint_name(&self) -> ::std::option::Option<&str> {
45 self.endpoint_name.as_deref()
46 }
47 /// <p>Provides input data, in the format specified in the <code>ContentType</code> request header. Amazon SageMaker AI passes all of the data in the body to the model.</p>
48 /// <p>For information about the format of the request body, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html">Common Data Formats-Inference</a>.</p>
49 pub fn body(&self) -> ::std::option::Option<&::aws_smithy_types::Blob> {
50 self.body.as_ref()
51 }
52 /// <p>The MIME type of the input data in the request body.</p>
53 pub fn content_type(&self) -> ::std::option::Option<&str> {
54 self.content_type.as_deref()
55 }
56 /// <p>The desired MIME type of the inference response from the model container.</p>
57 pub fn accept(&self) -> ::std::option::Option<&str> {
58 self.accept.as_deref()
59 }
60 /// <p>Provides additional information about a request for an inference submitted to a model hosted at an Amazon SageMaker AI endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to provide an ID that you can use to track a request or to provide other metadata that a service endpoint was programmed to process. The value must consist of no more than 1024 visible US-ASCII characters as specified in <a href="https://datatracker.ietf.org/doc/html/rfc7230#section-3.2.6">Section 3.3.6. Field Value Components</a> of the Hypertext Transfer Protocol (HTTP/1.1).</p>
61 /// <p>The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with <code>Trace ID:</code> in your post-processing function.</p>
62 /// <p>This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker AI Python SDK.</p>
63 pub fn custom_attributes(&self) -> ::std::option::Option<&str> {
64 self.custom_attributes.as_deref()
65 }
66 /// <p>The model to request for inference when invoking a multi-model endpoint.</p>
67 pub fn target_model(&self) -> ::std::option::Option<&str> {
68 self.target_model.as_deref()
69 }
70 /// <p>Specify the production variant to send the inference request to when invoking an endpoint that is running two or more variants. Note that this parameter overrides the default behavior for the endpoint, which is to distribute the invocation traffic based on the variant weights.</p>
71 /// <p>For information about how to use variant targeting to perform a/b testing, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-ab-testing.html">Test models in production</a></p>
72 pub fn target_variant(&self) -> ::std::option::Option<&str> {
73 self.target_variant.as_deref()
74 }
75 /// <p>If the endpoint hosts multiple containers and is configured to use direct invocation, this parameter specifies the host name of the container to invoke.</p>
76 pub fn target_container_hostname(&self) -> ::std::option::Option<&str> {
77 self.target_container_hostname.as_deref()
78 }
79 /// <p>If you provide a value, it is added to the captured data when you enable data capture on the endpoint. For information about data capture, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-capture.html">Capture Data</a>.</p>
80 pub fn inference_id(&self) -> ::std::option::Option<&str> {
81 self.inference_id.as_deref()
82 }
83 /// <p>An optional JMESPath expression used to override the <code>EnableExplanations</code> parameter of the <code>ClarifyExplainerConfig</code> API. See the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-online-explainability-create-endpoint.html#clarify-online-explainability-create-endpoint-enable">EnableExplanations</a> section in the developer guide for more information.</p>
84 pub fn enable_explanations(&self) -> ::std::option::Option<&str> {
85 self.enable_explanations.as_deref()
86 }
87 /// <p>If the endpoint hosts one or more inference components, this parameter specifies the name of inference component to invoke.</p>
88 pub fn inference_component_name(&self) -> ::std::option::Option<&str> {
89 self.inference_component_name.as_deref()
90 }
91 /// <p>Creates a stateful session or identifies an existing one. You can do one of the following:</p>
92 /// <ul>
93 /// <li>
94 /// <p>Create a stateful session by specifying the value <code>NEW_SESSION</code>.</p></li>
95 /// <li>
96 /// <p>Send your request to an existing stateful session by specifying the ID of that session.</p></li>
97 /// </ul>
98 /// <p>With a stateful session, you can send multiple requests to a stateful model. When you create a session with a stateful model, the model must create the session ID and set the expiration time. The model must also provide that information in the response to your request. You can get the ID and timestamp from the <code>NewSessionId</code> response parameter. For any subsequent request where you specify that session ID, SageMaker AI routes the request to the same instance that supports the session.</p>
99 pub fn session_id(&self) -> ::std::option::Option<&str> {
100 self.session_id.as_deref()
101 }
102}
103impl ::std::fmt::Debug for InvokeEndpointInput {
104 fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
105 let mut formatter = f.debug_struct("InvokeEndpointInput");
106 formatter.field("endpoint_name", &self.endpoint_name);
107 formatter.field("body", &"*** Sensitive Data Redacted ***");
108 formatter.field("content_type", &self.content_type);
109 formatter.field("accept", &self.accept);
110 formatter.field("custom_attributes", &"*** Sensitive Data Redacted ***");
111 formatter.field("target_model", &self.target_model);
112 formatter.field("target_variant", &self.target_variant);
113 formatter.field("target_container_hostname", &self.target_container_hostname);
114 formatter.field("inference_id", &self.inference_id);
115 formatter.field("enable_explanations", &self.enable_explanations);
116 formatter.field("inference_component_name", &self.inference_component_name);
117 formatter.field("session_id", &self.session_id);
118 formatter.finish()
119 }
120}
121impl InvokeEndpointInput {
122 /// Creates a new builder-style object to manufacture [`InvokeEndpointInput`](crate::operation::invoke_endpoint::InvokeEndpointInput).
123 pub fn builder() -> crate::operation::invoke_endpoint::builders::InvokeEndpointInputBuilder {
124 crate::operation::invoke_endpoint::builders::InvokeEndpointInputBuilder::default()
125 }
126}
127
128/// A builder for [`InvokeEndpointInput`](crate::operation::invoke_endpoint::InvokeEndpointInput).
129#[derive(::std::clone::Clone, ::std::cmp::PartialEq, ::std::default::Default)]
130#[non_exhaustive]
131pub struct InvokeEndpointInputBuilder {
132 pub(crate) endpoint_name: ::std::option::Option<::std::string::String>,
133 pub(crate) body: ::std::option::Option<::aws_smithy_types::Blob>,
134 pub(crate) content_type: ::std::option::Option<::std::string::String>,
135 pub(crate) accept: ::std::option::Option<::std::string::String>,
136 pub(crate) custom_attributes: ::std::option::Option<::std::string::String>,
137 pub(crate) target_model: ::std::option::Option<::std::string::String>,
138 pub(crate) target_variant: ::std::option::Option<::std::string::String>,
139 pub(crate) target_container_hostname: ::std::option::Option<::std::string::String>,
140 pub(crate) inference_id: ::std::option::Option<::std::string::String>,
141 pub(crate) enable_explanations: ::std::option::Option<::std::string::String>,
142 pub(crate) inference_component_name: ::std::option::Option<::std::string::String>,
143 pub(crate) session_id: ::std::option::Option<::std::string::String>,
144}
145impl InvokeEndpointInputBuilder {
146 /// <p>The name of the endpoint that you specified when you created the endpoint using the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpoint.html">CreateEndpoint</a> API.</p>
147 /// This field is required.
148 pub fn endpoint_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
149 self.endpoint_name = ::std::option::Option::Some(input.into());
150 self
151 }
152 /// <p>The name of the endpoint that you specified when you created the endpoint using the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpoint.html">CreateEndpoint</a> API.</p>
153 pub fn set_endpoint_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
154 self.endpoint_name = input;
155 self
156 }
157 /// <p>The name of the endpoint that you specified when you created the endpoint using the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpoint.html">CreateEndpoint</a> API.</p>
158 pub fn get_endpoint_name(&self) -> &::std::option::Option<::std::string::String> {
159 &self.endpoint_name
160 }
161 /// <p>Provides input data, in the format specified in the <code>ContentType</code> request header. Amazon SageMaker AI passes all of the data in the body to the model.</p>
162 /// <p>For information about the format of the request body, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html">Common Data Formats-Inference</a>.</p>
163 /// This field is required.
164 pub fn body(mut self, input: ::aws_smithy_types::Blob) -> Self {
165 self.body = ::std::option::Option::Some(input);
166 self
167 }
168 /// <p>Provides input data, in the format specified in the <code>ContentType</code> request header. Amazon SageMaker AI passes all of the data in the body to the model.</p>
169 /// <p>For information about the format of the request body, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html">Common Data Formats-Inference</a>.</p>
170 pub fn set_body(mut self, input: ::std::option::Option<::aws_smithy_types::Blob>) -> Self {
171 self.body = input;
172 self
173 }
174 /// <p>Provides input data, in the format specified in the <code>ContentType</code> request header. Amazon SageMaker AI passes all of the data in the body to the model.</p>
175 /// <p>For information about the format of the request body, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html">Common Data Formats-Inference</a>.</p>
176 pub fn get_body(&self) -> &::std::option::Option<::aws_smithy_types::Blob> {
177 &self.body
178 }
179 /// <p>The MIME type of the input data in the request body.</p>
180 pub fn content_type(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
181 self.content_type = ::std::option::Option::Some(input.into());
182 self
183 }
184 /// <p>The MIME type of the input data in the request body.</p>
185 pub fn set_content_type(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
186 self.content_type = input;
187 self
188 }
189 /// <p>The MIME type of the input data in the request body.</p>
190 pub fn get_content_type(&self) -> &::std::option::Option<::std::string::String> {
191 &self.content_type
192 }
193 /// <p>The desired MIME type of the inference response from the model container.</p>
194 pub fn accept(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
195 self.accept = ::std::option::Option::Some(input.into());
196 self
197 }
198 /// <p>The desired MIME type of the inference response from the model container.</p>
199 pub fn set_accept(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
200 self.accept = input;
201 self
202 }
203 /// <p>The desired MIME type of the inference response from the model container.</p>
204 pub fn get_accept(&self) -> &::std::option::Option<::std::string::String> {
205 &self.accept
206 }
207 /// <p>Provides additional information about a request for an inference submitted to a model hosted at an Amazon SageMaker AI endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to provide an ID that you can use to track a request or to provide other metadata that a service endpoint was programmed to process. The value must consist of no more than 1024 visible US-ASCII characters as specified in <a href="https://datatracker.ietf.org/doc/html/rfc7230#section-3.2.6">Section 3.3.6. Field Value Components</a> of the Hypertext Transfer Protocol (HTTP/1.1).</p>
208 /// <p>The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with <code>Trace ID:</code> in your post-processing function.</p>
209 /// <p>This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker AI Python SDK.</p>
210 pub fn custom_attributes(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
211 self.custom_attributes = ::std::option::Option::Some(input.into());
212 self
213 }
214 /// <p>Provides additional information about a request for an inference submitted to a model hosted at an Amazon SageMaker AI endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to provide an ID that you can use to track a request or to provide other metadata that a service endpoint was programmed to process. The value must consist of no more than 1024 visible US-ASCII characters as specified in <a href="https://datatracker.ietf.org/doc/html/rfc7230#section-3.2.6">Section 3.3.6. Field Value Components</a> of the Hypertext Transfer Protocol (HTTP/1.1).</p>
215 /// <p>The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with <code>Trace ID:</code> in your post-processing function.</p>
216 /// <p>This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker AI Python SDK.</p>
217 pub fn set_custom_attributes(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
218 self.custom_attributes = input;
219 self
220 }
221 /// <p>Provides additional information about a request for an inference submitted to a model hosted at an Amazon SageMaker AI endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to provide an ID that you can use to track a request or to provide other metadata that a service endpoint was programmed to process. The value must consist of no more than 1024 visible US-ASCII characters as specified in <a href="https://datatracker.ietf.org/doc/html/rfc7230#section-3.2.6">Section 3.3.6. Field Value Components</a> of the Hypertext Transfer Protocol (HTTP/1.1).</p>
222 /// <p>The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with <code>Trace ID:</code> in your post-processing function.</p>
223 /// <p>This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker AI Python SDK.</p>
224 pub fn get_custom_attributes(&self) -> &::std::option::Option<::std::string::String> {
225 &self.custom_attributes
226 }
227 /// <p>The model to request for inference when invoking a multi-model endpoint.</p>
228 pub fn target_model(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
229 self.target_model = ::std::option::Option::Some(input.into());
230 self
231 }
232 /// <p>The model to request for inference when invoking a multi-model endpoint.</p>
233 pub fn set_target_model(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
234 self.target_model = input;
235 self
236 }
237 /// <p>The model to request for inference when invoking a multi-model endpoint.</p>
238 pub fn get_target_model(&self) -> &::std::option::Option<::std::string::String> {
239 &self.target_model
240 }
241 /// <p>Specify the production variant to send the inference request to when invoking an endpoint that is running two or more variants. Note that this parameter overrides the default behavior for the endpoint, which is to distribute the invocation traffic based on the variant weights.</p>
242 /// <p>For information about how to use variant targeting to perform a/b testing, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-ab-testing.html">Test models in production</a></p>
243 pub fn target_variant(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
244 self.target_variant = ::std::option::Option::Some(input.into());
245 self
246 }
247 /// <p>Specify the production variant to send the inference request to when invoking an endpoint that is running two or more variants. Note that this parameter overrides the default behavior for the endpoint, which is to distribute the invocation traffic based on the variant weights.</p>
248 /// <p>For information about how to use variant targeting to perform a/b testing, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-ab-testing.html">Test models in production</a></p>
249 pub fn set_target_variant(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
250 self.target_variant = input;
251 self
252 }
253 /// <p>Specify the production variant to send the inference request to when invoking an endpoint that is running two or more variants. Note that this parameter overrides the default behavior for the endpoint, which is to distribute the invocation traffic based on the variant weights.</p>
254 /// <p>For information about how to use variant targeting to perform a/b testing, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-ab-testing.html">Test models in production</a></p>
255 pub fn get_target_variant(&self) -> &::std::option::Option<::std::string::String> {
256 &self.target_variant
257 }
258 /// <p>If the endpoint hosts multiple containers and is configured to use direct invocation, this parameter specifies the host name of the container to invoke.</p>
259 pub fn target_container_hostname(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
260 self.target_container_hostname = ::std::option::Option::Some(input.into());
261 self
262 }
263 /// <p>If the endpoint hosts multiple containers and is configured to use direct invocation, this parameter specifies the host name of the container to invoke.</p>
264 pub fn set_target_container_hostname(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
265 self.target_container_hostname = input;
266 self
267 }
268 /// <p>If the endpoint hosts multiple containers and is configured to use direct invocation, this parameter specifies the host name of the container to invoke.</p>
269 pub fn get_target_container_hostname(&self) -> &::std::option::Option<::std::string::String> {
270 &self.target_container_hostname
271 }
272 /// <p>If you provide a value, it is added to the captured data when you enable data capture on the endpoint. For information about data capture, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-capture.html">Capture Data</a>.</p>
273 pub fn inference_id(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
274 self.inference_id = ::std::option::Option::Some(input.into());
275 self
276 }
277 /// <p>If you provide a value, it is added to the captured data when you enable data capture on the endpoint. For information about data capture, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-capture.html">Capture Data</a>.</p>
278 pub fn set_inference_id(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
279 self.inference_id = input;
280 self
281 }
282 /// <p>If you provide a value, it is added to the captured data when you enable data capture on the endpoint. For information about data capture, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-capture.html">Capture Data</a>.</p>
283 pub fn get_inference_id(&self) -> &::std::option::Option<::std::string::String> {
284 &self.inference_id
285 }
286 /// <p>An optional JMESPath expression used to override the <code>EnableExplanations</code> parameter of the <code>ClarifyExplainerConfig</code> API. See the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-online-explainability-create-endpoint.html#clarify-online-explainability-create-endpoint-enable">EnableExplanations</a> section in the developer guide for more information.</p>
287 pub fn enable_explanations(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
288 self.enable_explanations = ::std::option::Option::Some(input.into());
289 self
290 }
291 /// <p>An optional JMESPath expression used to override the <code>EnableExplanations</code> parameter of the <code>ClarifyExplainerConfig</code> API. See the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-online-explainability-create-endpoint.html#clarify-online-explainability-create-endpoint-enable">EnableExplanations</a> section in the developer guide for more information.</p>
292 pub fn set_enable_explanations(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
293 self.enable_explanations = input;
294 self
295 }
296 /// <p>An optional JMESPath expression used to override the <code>EnableExplanations</code> parameter of the <code>ClarifyExplainerConfig</code> API. See the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-online-explainability-create-endpoint.html#clarify-online-explainability-create-endpoint-enable">EnableExplanations</a> section in the developer guide for more information.</p>
297 pub fn get_enable_explanations(&self) -> &::std::option::Option<::std::string::String> {
298 &self.enable_explanations
299 }
300 /// <p>If the endpoint hosts one or more inference components, this parameter specifies the name of inference component to invoke.</p>
301 pub fn inference_component_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
302 self.inference_component_name = ::std::option::Option::Some(input.into());
303 self
304 }
305 /// <p>If the endpoint hosts one or more inference components, this parameter specifies the name of inference component to invoke.</p>
306 pub fn set_inference_component_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
307 self.inference_component_name = input;
308 self
309 }
310 /// <p>If the endpoint hosts one or more inference components, this parameter specifies the name of inference component to invoke.</p>
311 pub fn get_inference_component_name(&self) -> &::std::option::Option<::std::string::String> {
312 &self.inference_component_name
313 }
314 /// <p>Creates a stateful session or identifies an existing one. You can do one of the following:</p>
315 /// <ul>
316 /// <li>
317 /// <p>Create a stateful session by specifying the value <code>NEW_SESSION</code>.</p></li>
318 /// <li>
319 /// <p>Send your request to an existing stateful session by specifying the ID of that session.</p></li>
320 /// </ul>
321 /// <p>With a stateful session, you can send multiple requests to a stateful model. When you create a session with a stateful model, the model must create the session ID and set the expiration time. The model must also provide that information in the response to your request. You can get the ID and timestamp from the <code>NewSessionId</code> response parameter. For any subsequent request where you specify that session ID, SageMaker AI routes the request to the same instance that supports the session.</p>
322 pub fn session_id(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
323 self.session_id = ::std::option::Option::Some(input.into());
324 self
325 }
326 /// <p>Creates a stateful session or identifies an existing one. You can do one of the following:</p>
327 /// <ul>
328 /// <li>
329 /// <p>Create a stateful session by specifying the value <code>NEW_SESSION</code>.</p></li>
330 /// <li>
331 /// <p>Send your request to an existing stateful session by specifying the ID of that session.</p></li>
332 /// </ul>
333 /// <p>With a stateful session, you can send multiple requests to a stateful model. When you create a session with a stateful model, the model must create the session ID and set the expiration time. The model must also provide that information in the response to your request. You can get the ID and timestamp from the <code>NewSessionId</code> response parameter. For any subsequent request where you specify that session ID, SageMaker AI routes the request to the same instance that supports the session.</p>
334 pub fn set_session_id(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
335 self.session_id = input;
336 self
337 }
338 /// <p>Creates a stateful session or identifies an existing one. You can do one of the following:</p>
339 /// <ul>
340 /// <li>
341 /// <p>Create a stateful session by specifying the value <code>NEW_SESSION</code>.</p></li>
342 /// <li>
343 /// <p>Send your request to an existing stateful session by specifying the ID of that session.</p></li>
344 /// </ul>
345 /// <p>With a stateful session, you can send multiple requests to a stateful model. When you create a session with a stateful model, the model must create the session ID and set the expiration time. The model must also provide that information in the response to your request. You can get the ID and timestamp from the <code>NewSessionId</code> response parameter. For any subsequent request where you specify that session ID, SageMaker AI routes the request to the same instance that supports the session.</p>
346 pub fn get_session_id(&self) -> &::std::option::Option<::std::string::String> {
347 &self.session_id
348 }
349 /// Consumes the builder and constructs a [`InvokeEndpointInput`](crate::operation::invoke_endpoint::InvokeEndpointInput).
350 pub fn build(
351 self,
352 ) -> ::std::result::Result<crate::operation::invoke_endpoint::InvokeEndpointInput, ::aws_smithy_types::error::operation::BuildError> {
353 ::std::result::Result::Ok(crate::operation::invoke_endpoint::InvokeEndpointInput {
354 endpoint_name: self.endpoint_name,
355 body: self.body,
356 content_type: self.content_type,
357 accept: self.accept,
358 custom_attributes: self.custom_attributes,
359 target_model: self.target_model,
360 target_variant: self.target_variant,
361 target_container_hostname: self.target_container_hostname,
362 inference_id: self.inference_id,
363 enable_explanations: self.enable_explanations,
364 inference_component_name: self.inference_component_name,
365 session_id: self.session_id,
366 })
367 }
368}
369impl ::std::fmt::Debug for InvokeEndpointInputBuilder {
370 fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
371 let mut formatter = f.debug_struct("InvokeEndpointInputBuilder");
372 formatter.field("endpoint_name", &self.endpoint_name);
373 formatter.field("body", &"*** Sensitive Data Redacted ***");
374 formatter.field("content_type", &self.content_type);
375 formatter.field("accept", &self.accept);
376 formatter.field("custom_attributes", &"*** Sensitive Data Redacted ***");
377 formatter.field("target_model", &self.target_model);
378 formatter.field("target_variant", &self.target_variant);
379 formatter.field("target_container_hostname", &self.target_container_hostname);
380 formatter.field("inference_id", &self.inference_id);
381 formatter.field("enable_explanations", &self.enable_explanations);
382 formatter.field("inference_component_name", &self.inference_component_name);
383 formatter.field("session_id", &self.session_id);
384 formatter.finish()
385 }
386}