1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
use std::fmt::Write;
/// See [`InvokeEndpointInput`](crate::input::InvokeEndpointInput)
pub mod invoke_endpoint_input {
/// A builder for [`InvokeEndpointInput`](crate::input::InvokeEndpointInput)
#[non_exhaustive]
#[derive(std::default::Default, std::clone::Clone, std::cmp::PartialEq, std::fmt::Debug)]
pub struct Builder {
pub(crate) endpoint_name: std::option::Option<std::string::String>,
pub(crate) body: std::option::Option<aws_smithy_types::Blob>,
pub(crate) content_type: std::option::Option<std::string::String>,
pub(crate) accept: std::option::Option<std::string::String>,
pub(crate) custom_attributes: std::option::Option<std::string::String>,
pub(crate) target_model: std::option::Option<std::string::String>,
pub(crate) target_variant: std::option::Option<std::string::String>,
pub(crate) target_container_hostname: std::option::Option<std::string::String>,
pub(crate) inference_id: std::option::Option<std::string::String>,
}
impl Builder {
/// <p>The name of the endpoint that you specified when you created the endpoint using the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpoint.html">CreateEndpoint</a> API. </p>
pub fn endpoint_name(mut self, input: impl Into<std::string::String>) -> Self {
self.endpoint_name = Some(input.into());
self
}
/// <p>The name of the endpoint that you specified when you created the endpoint using the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpoint.html">CreateEndpoint</a> API. </p>
pub fn set_endpoint_name(
mut self,
input: std::option::Option<std::string::String>,
) -> Self {
self.endpoint_name = input;
self
}
/// <p>Provides input data, in the format specified in the <code>ContentType</code> request header. Amazon SageMaker passes all of the data in the body to the model. </p>
/// <p>For information about the format of the request body, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html">Common Data Formats-Inference</a>.</p>
pub fn body(mut self, input: aws_smithy_types::Blob) -> Self {
self.body = Some(input);
self
}
/// <p>Provides input data, in the format specified in the <code>ContentType</code> request header. Amazon SageMaker passes all of the data in the body to the model. </p>
/// <p>For information about the format of the request body, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html">Common Data Formats-Inference</a>.</p>
pub fn set_body(mut self, input: std::option::Option<aws_smithy_types::Blob>) -> Self {
self.body = input;
self
}
/// <p>The MIME type of the input data in the request body.</p>
pub fn content_type(mut self, input: impl Into<std::string::String>) -> Self {
self.content_type = Some(input.into());
self
}
/// <p>The MIME type of the input data in the request body.</p>
pub fn set_content_type(mut self, input: std::option::Option<std::string::String>) -> Self {
self.content_type = input;
self
}
/// <p>The desired MIME type of the inference in the response.</p>
pub fn accept(mut self, input: impl Into<std::string::String>) -> Self {
self.accept = Some(input.into());
self
}
/// <p>The desired MIME type of the inference in the response.</p>
pub fn set_accept(mut self, input: std::option::Option<std::string::String>) -> Self {
self.accept = input;
self
}
/// <p>Provides additional information about a request for an inference submitted to a model hosted at an Amazon SageMaker endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to provide an ID that you can use to track a request or to provide other metadata that a service endpoint was programmed to process. The value must consist of no more than 1024 visible US-ASCII characters as specified in <a href="https://tools.ietf.org/html/rfc7230#section-3.2.6">Section 3.3.6. Field Value Components</a> of the Hypertext Transfer Protocol (HTTP/1.1). </p>
/// <p>The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with <code>Trace ID:</code> in your post-processing function.</p>
/// <p>This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker Python SDK.</p>
pub fn custom_attributes(mut self, input: impl Into<std::string::String>) -> Self {
self.custom_attributes = Some(input.into());
self
}
/// <p>Provides additional information about a request for an inference submitted to a model hosted at an Amazon SageMaker endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to provide an ID that you can use to track a request or to provide other metadata that a service endpoint was programmed to process. The value must consist of no more than 1024 visible US-ASCII characters as specified in <a href="https://tools.ietf.org/html/rfc7230#section-3.2.6">Section 3.3.6. Field Value Components</a> of the Hypertext Transfer Protocol (HTTP/1.1). </p>
/// <p>The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with <code>Trace ID:</code> in your post-processing function.</p>
/// <p>This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker Python SDK.</p>
pub fn set_custom_attributes(
mut self,
input: std::option::Option<std::string::String>,
) -> Self {
self.custom_attributes = input;
self
}
/// <p>The model to request for inference when invoking a multi-model endpoint.</p>
pub fn target_model(mut self, input: impl Into<std::string::String>) -> Self {
self.target_model = Some(input.into());
self
}
/// <p>The model to request for inference when invoking a multi-model endpoint.</p>
pub fn set_target_model(mut self, input: std::option::Option<std::string::String>) -> Self {
self.target_model = input;
self
}
/// <p>Specify the production variant to send the inference request to when invoking an endpoint that is running two or more variants. Note that this parameter overrides the default behavior for the endpoint, which is to distribute the invocation traffic based on the variant weights.</p>
/// <p>For information about how to use variant targeting to perform a/b testing, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-ab-testing.html">Test models in production</a> </p>
pub fn target_variant(mut self, input: impl Into<std::string::String>) -> Self {
self.target_variant = Some(input.into());
self
}
/// <p>Specify the production variant to send the inference request to when invoking an endpoint that is running two or more variants. Note that this parameter overrides the default behavior for the endpoint, which is to distribute the invocation traffic based on the variant weights.</p>
/// <p>For information about how to use variant targeting to perform a/b testing, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-ab-testing.html">Test models in production</a> </p>
pub fn set_target_variant(
mut self,
input: std::option::Option<std::string::String>,
) -> Self {
self.target_variant = input;
self
}
/// <p>If the endpoint hosts multiple containers and is configured to use direct invocation, this parameter specifies the host name of the container to invoke.</p>
pub fn target_container_hostname(mut self, input: impl Into<std::string::String>) -> Self {
self.target_container_hostname = Some(input.into());
self
}
/// <p>If the endpoint hosts multiple containers and is configured to use direct invocation, this parameter specifies the host name of the container to invoke.</p>
pub fn set_target_container_hostname(
mut self,
input: std::option::Option<std::string::String>,
) -> Self {
self.target_container_hostname = input;
self
}
/// <p>If you provide a value, it is added to the captured data when you enable data capture on the endpoint. For information about data capture, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-capture.html">Capture Data</a>.</p>
pub fn inference_id(mut self, input: impl Into<std::string::String>) -> Self {
self.inference_id = Some(input.into());
self
}
/// <p>If you provide a value, it is added to the captured data when you enable data capture on the endpoint. For information about data capture, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-capture.html">Capture Data</a>.</p>
pub fn set_inference_id(mut self, input: std::option::Option<std::string::String>) -> Self {
self.inference_id = input;
self
}
/// Consumes the builder and constructs a [`InvokeEndpointInput`](crate::input::InvokeEndpointInput)
pub fn build(
self,
) -> std::result::Result<
crate::input::InvokeEndpointInput,
aws_smithy_http::operation::BuildError,
> {
Ok(crate::input::InvokeEndpointInput {
endpoint_name: self.endpoint_name,
body: self.body,
content_type: self.content_type,
accept: self.accept,
custom_attributes: self.custom_attributes,
target_model: self.target_model,
target_variant: self.target_variant,
target_container_hostname: self.target_container_hostname,
inference_id: self.inference_id,
})
}
}
}
#[doc(hidden)]
pub type InvokeEndpointInputOperationOutputAlias = crate::operation::InvokeEndpoint;
#[doc(hidden)]
pub type InvokeEndpointInputOperationRetryAlias = aws_http::retry::AwsErrorRetryPolicy;
impl InvokeEndpointInput {
/// Consumes the builder and constructs an Operation<[`InvokeEndpoint`](crate::operation::InvokeEndpoint)>
#[allow(unused_mut)]
#[allow(clippy::let_and_return)]
#[allow(clippy::needless_borrow)]
pub async fn make_operation(
self,
_config: &crate::config::Config,
) -> std::result::Result<
aws_smithy_http::operation::Operation<
crate::operation::InvokeEndpoint,
aws_http::retry::AwsErrorRetryPolicy,
>,
aws_smithy_http::operation::BuildError,
> {
let mut request = {
fn uri_base(
_input: &crate::input::InvokeEndpointInput,
output: &mut String,
) -> Result<(), aws_smithy_http::operation::BuildError> {
let input_1 = &_input.endpoint_name;
let input_1 = input_1.as_ref().ok_or(
aws_smithy_http::operation::BuildError::MissingField {
field: "endpoint_name",
details: "cannot be empty or unset",
},
)?;
let endpoint_name = aws_smithy_http::label::fmt_string(input_1, false);
if endpoint_name.is_empty() {
return Err(aws_smithy_http::operation::BuildError::MissingField {
field: "endpoint_name",
details: "cannot be empty or unset",
});
}
write!(
output,
"/endpoints/{EndpointName}/invocations",
EndpointName = endpoint_name
)
.expect("formatting should succeed");
Ok(())
}
#[allow(clippy::unnecessary_wraps)]
fn update_http_builder(
input: &crate::input::InvokeEndpointInput,
builder: http::request::Builder,
) -> std::result::Result<http::request::Builder, aws_smithy_http::operation::BuildError>
{
let mut uri = String::new();
uri_base(input, &mut uri)?;
let builder = crate::http_serde::add_headers_invoke_endpoint(input, builder)?;
Ok(builder.method("POST").uri(uri))
}
let mut builder = update_http_builder(&self, http::request::Builder::new())?;
builder = aws_smithy_http::header::set_request_header_if_absent(
builder,
http::header::CONTENT_TYPE,
"application/octet-stream",
);
builder
};
let mut properties = aws_smithy_http::property_bag::SharedPropertyBag::new();
#[allow(clippy::useless_conversion)]
let body = aws_smithy_http::body::SdkBody::from(
crate::operation_ser::serialize_payload_invoke_endpoint_input(self.body)?,
);
if let Some(content_length) = body.content_length() {
request = aws_smithy_http::header::set_request_header_if_absent(
request,
http::header::CONTENT_LENGTH,
content_length,
);
}
let request = request.body(body).expect("should be valid request");
let mut request = aws_smithy_http::operation::Request::from_parts(request, properties);
request
.properties_mut()
.insert(aws_smithy_http::http_versions::DEFAULT_HTTP_VERSION_LIST.clone());
let mut user_agent = aws_http::user_agent::AwsUserAgent::new_from_environment(
aws_types::os_shim_internal::Env::real(),
crate::API_METADATA.clone(),
);
if let Some(app_name) = _config.app_name() {
user_agent = user_agent.with_app_name(app_name.clone());
}
request.properties_mut().insert(user_agent);
let mut signing_config = aws_sig_auth::signer::OperationSigningConfig::default_config();
request.properties_mut().insert(signing_config);
request
.properties_mut()
.insert(aws_types::SigningService::from_static(
_config.signing_service(),
));
aws_endpoint::set_endpoint_resolver(
&mut request.properties_mut(),
_config.endpoint_resolver.clone(),
);
if let Some(region) = &_config.region {
request.properties_mut().insert(region.clone());
}
aws_http::auth::set_provider(
&mut request.properties_mut(),
_config.credentials_provider.clone(),
);
let op = aws_smithy_http::operation::Operation::new(
request,
crate::operation::InvokeEndpoint::new(),
)
.with_metadata(aws_smithy_http::operation::Metadata::new(
"InvokeEndpoint",
"sagemakerruntime",
));
let op = op.with_retry_policy(aws_http::retry::AwsErrorRetryPolicy::new());
Ok(op)
}
/// Creates a new builder-style object to manufacture [`InvokeEndpointInput`](crate::input::InvokeEndpointInput)
pub fn builder() -> crate::input::invoke_endpoint_input::Builder {
crate::input::invoke_endpoint_input::Builder::default()
}
}
/// See [`InvokeEndpointAsyncInput`](crate::input::InvokeEndpointAsyncInput)
pub mod invoke_endpoint_async_input {
/// A builder for [`InvokeEndpointAsyncInput`](crate::input::InvokeEndpointAsyncInput)
#[non_exhaustive]
#[derive(std::default::Default, std::clone::Clone, std::cmp::PartialEq, std::fmt::Debug)]
pub struct Builder {
pub(crate) endpoint_name: std::option::Option<std::string::String>,
pub(crate) content_type: std::option::Option<std::string::String>,
pub(crate) accept: std::option::Option<std::string::String>,
pub(crate) custom_attributes: std::option::Option<std::string::String>,
pub(crate) inference_id: std::option::Option<std::string::String>,
pub(crate) input_location: std::option::Option<std::string::String>,
pub(crate) request_ttl_seconds: std::option::Option<i32>,
}
impl Builder {
/// <p>The name of the endpoint that you specified when you created the endpoint using the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html"> <code>CreateEndpoint</code> </a> API.</p>
pub fn endpoint_name(mut self, input: impl Into<std::string::String>) -> Self {
self.endpoint_name = Some(input.into());
self
}
/// <p>The name of the endpoint that you specified when you created the endpoint using the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html"> <code>CreateEndpoint</code> </a> API.</p>
pub fn set_endpoint_name(
mut self,
input: std::option::Option<std::string::String>,
) -> Self {
self.endpoint_name = input;
self
}
/// <p>The MIME type of the input data in the request body.</p>
pub fn content_type(mut self, input: impl Into<std::string::String>) -> Self {
self.content_type = Some(input.into());
self
}
/// <p>The MIME type of the input data in the request body.</p>
pub fn set_content_type(mut self, input: std::option::Option<std::string::String>) -> Self {
self.content_type = input;
self
}
/// <p>The desired MIME type of the inference in the response.</p>
pub fn accept(mut self, input: impl Into<std::string::String>) -> Self {
self.accept = Some(input.into());
self
}
/// <p>The desired MIME type of the inference in the response.</p>
pub fn set_accept(mut self, input: std::option::Option<std::string::String>) -> Self {
self.accept = input;
self
}
/// <p>Provides additional information about a request for an inference submitted to a model hosted at an Amazon SageMaker endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to provide an ID that you can use to track a request or to provide other metadata that a service endpoint was programmed to process. The value must consist of no more than 1024 visible US-ASCII characters as specified in <a href="https://datatracker.ietf.org/doc/html/rfc7230#section-3.2.6">Section 3.3.6. Field Value Components</a> of the Hypertext Transfer Protocol (HTTP/1.1). </p>
/// <p>The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with <code>Trace ID</code>: in your post-processing function. </p>
/// <p>This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker Python SDK. </p>
pub fn custom_attributes(mut self, input: impl Into<std::string::String>) -> Self {
self.custom_attributes = Some(input.into());
self
}
/// <p>Provides additional information about a request for an inference submitted to a model hosted at an Amazon SageMaker endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to provide an ID that you can use to track a request or to provide other metadata that a service endpoint was programmed to process. The value must consist of no more than 1024 visible US-ASCII characters as specified in <a href="https://datatracker.ietf.org/doc/html/rfc7230#section-3.2.6">Section 3.3.6. Field Value Components</a> of the Hypertext Transfer Protocol (HTTP/1.1). </p>
/// <p>The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with <code>Trace ID</code>: in your post-processing function. </p>
/// <p>This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker Python SDK. </p>
pub fn set_custom_attributes(
mut self,
input: std::option::Option<std::string::String>,
) -> Self {
self.custom_attributes = input;
self
}
/// <p>The identifier for the inference request. Amazon SageMaker will generate an identifier for you if none is specified. </p>
pub fn inference_id(mut self, input: impl Into<std::string::String>) -> Self {
self.inference_id = Some(input.into());
self
}
/// <p>The identifier for the inference request. Amazon SageMaker will generate an identifier for you if none is specified. </p>
pub fn set_inference_id(mut self, input: std::option::Option<std::string::String>) -> Self {
self.inference_id = input;
self
}
/// <p>The Amazon S3 URI where the inference request payload is stored.</p>
pub fn input_location(mut self, input: impl Into<std::string::String>) -> Self {
self.input_location = Some(input.into());
self
}
/// <p>The Amazon S3 URI where the inference request payload is stored.</p>
pub fn set_input_location(
mut self,
input: std::option::Option<std::string::String>,
) -> Self {
self.input_location = input;
self
}
/// <p>Maximum age in seconds a request can be in the queue before it is marked as expired.</p>
pub fn request_ttl_seconds(mut self, input: i32) -> Self {
self.request_ttl_seconds = Some(input);
self
}
/// <p>Maximum age in seconds a request can be in the queue before it is marked as expired.</p>
pub fn set_request_ttl_seconds(mut self, input: std::option::Option<i32>) -> Self {
self.request_ttl_seconds = input;
self
}
/// Consumes the builder and constructs a [`InvokeEndpointAsyncInput`](crate::input::InvokeEndpointAsyncInput)
pub fn build(
self,
) -> std::result::Result<
crate::input::InvokeEndpointAsyncInput,
aws_smithy_http::operation::BuildError,
> {
Ok(crate::input::InvokeEndpointAsyncInput {
endpoint_name: self.endpoint_name,
content_type: self.content_type,
accept: self.accept,
custom_attributes: self.custom_attributes,
inference_id: self.inference_id,
input_location: self.input_location,
request_ttl_seconds: self.request_ttl_seconds,
})
}
}
}
#[doc(hidden)]
pub type InvokeEndpointAsyncInputOperationOutputAlias = crate::operation::InvokeEndpointAsync;
#[doc(hidden)]
pub type InvokeEndpointAsyncInputOperationRetryAlias = aws_http::retry::AwsErrorRetryPolicy;
impl InvokeEndpointAsyncInput {
/// Consumes the builder and constructs an Operation<[`InvokeEndpointAsync`](crate::operation::InvokeEndpointAsync)>
#[allow(unused_mut)]
#[allow(clippy::let_and_return)]
#[allow(clippy::needless_borrow)]
pub async fn make_operation(
&self,
_config: &crate::config::Config,
) -> std::result::Result<
aws_smithy_http::operation::Operation<
crate::operation::InvokeEndpointAsync,
aws_http::retry::AwsErrorRetryPolicy,
>,
aws_smithy_http::operation::BuildError,
> {
let mut request = {
fn uri_base(
_input: &crate::input::InvokeEndpointAsyncInput,
output: &mut String,
) -> Result<(), aws_smithy_http::operation::BuildError> {
let input_2 = &_input.endpoint_name;
let input_2 = input_2.as_ref().ok_or(
aws_smithy_http::operation::BuildError::MissingField {
field: "endpoint_name",
details: "cannot be empty or unset",
},
)?;
let endpoint_name = aws_smithy_http::label::fmt_string(input_2, false);
if endpoint_name.is_empty() {
return Err(aws_smithy_http::operation::BuildError::MissingField {
field: "endpoint_name",
details: "cannot be empty or unset",
});
}
write!(
output,
"/endpoints/{EndpointName}/async-invocations",
EndpointName = endpoint_name
)
.expect("formatting should succeed");
Ok(())
}
#[allow(clippy::unnecessary_wraps)]
fn update_http_builder(
input: &crate::input::InvokeEndpointAsyncInput,
builder: http::request::Builder,
) -> std::result::Result<http::request::Builder, aws_smithy_http::operation::BuildError>
{
let mut uri = String::new();
uri_base(input, &mut uri)?;
let builder = crate::http_serde::add_headers_invoke_endpoint_async(input, builder)?;
Ok(builder.method("POST").uri(uri))
}
let mut builder = update_http_builder(&self, http::request::Builder::new())?;
builder
};
let mut properties = aws_smithy_http::property_bag::SharedPropertyBag::new();
#[allow(clippy::useless_conversion)]
let body = aws_smithy_http::body::SdkBody::from("");
let request = request.body(body).expect("should be valid request");
let mut request = aws_smithy_http::operation::Request::from_parts(request, properties);
request
.properties_mut()
.insert(aws_smithy_http::http_versions::DEFAULT_HTTP_VERSION_LIST.clone());
let mut user_agent = aws_http::user_agent::AwsUserAgent::new_from_environment(
aws_types::os_shim_internal::Env::real(),
crate::API_METADATA.clone(),
);
if let Some(app_name) = _config.app_name() {
user_agent = user_agent.with_app_name(app_name.clone());
}
request.properties_mut().insert(user_agent);
let mut signing_config = aws_sig_auth::signer::OperationSigningConfig::default_config();
request.properties_mut().insert(signing_config);
request
.properties_mut()
.insert(aws_types::SigningService::from_static(
_config.signing_service(),
));
aws_endpoint::set_endpoint_resolver(
&mut request.properties_mut(),
_config.endpoint_resolver.clone(),
);
if let Some(region) = &_config.region {
request.properties_mut().insert(region.clone());
}
aws_http::auth::set_provider(
&mut request.properties_mut(),
_config.credentials_provider.clone(),
);
let op = aws_smithy_http::operation::Operation::new(
request,
crate::operation::InvokeEndpointAsync::new(),
)
.with_metadata(aws_smithy_http::operation::Metadata::new(
"InvokeEndpointAsync",
"sagemakerruntime",
));
let op = op.with_retry_policy(aws_http::retry::AwsErrorRetryPolicy::new());
Ok(op)
}
/// Creates a new builder-style object to manufacture [`InvokeEndpointAsyncInput`](crate::input::InvokeEndpointAsyncInput)
pub fn builder() -> crate::input::invoke_endpoint_async_input::Builder {
crate::input::invoke_endpoint_async_input::Builder::default()
}
}
#[allow(missing_docs)] // documentation missing in model
#[non_exhaustive]
#[derive(std::clone::Clone, std::cmp::PartialEq)]
pub struct InvokeEndpointAsyncInput {
/// <p>The name of the endpoint that you specified when you created the endpoint using the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html"> <code>CreateEndpoint</code> </a> API.</p>
pub endpoint_name: std::option::Option<std::string::String>,
/// <p>The MIME type of the input data in the request body.</p>
pub content_type: std::option::Option<std::string::String>,
/// <p>The desired MIME type of the inference in the response.</p>
pub accept: std::option::Option<std::string::String>,
/// <p>Provides additional information about a request for an inference submitted to a model hosted at an Amazon SageMaker endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to provide an ID that you can use to track a request or to provide other metadata that a service endpoint was programmed to process. The value must consist of no more than 1024 visible US-ASCII characters as specified in <a href="https://datatracker.ietf.org/doc/html/rfc7230#section-3.2.6">Section 3.3.6. Field Value Components</a> of the Hypertext Transfer Protocol (HTTP/1.1). </p>
/// <p>The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with <code>Trace ID</code>: in your post-processing function. </p>
/// <p>This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker Python SDK. </p>
pub custom_attributes: std::option::Option<std::string::String>,
/// <p>The identifier for the inference request. Amazon SageMaker will generate an identifier for you if none is specified. </p>
pub inference_id: std::option::Option<std::string::String>,
/// <p>The Amazon S3 URI where the inference request payload is stored.</p>
pub input_location: std::option::Option<std::string::String>,
/// <p>Maximum age in seconds a request can be in the queue before it is marked as expired.</p>
pub request_ttl_seconds: std::option::Option<i32>,
}
impl InvokeEndpointAsyncInput {
/// <p>The name of the endpoint that you specified when you created the endpoint using the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html"> <code>CreateEndpoint</code> </a> API.</p>
pub fn endpoint_name(&self) -> std::option::Option<&str> {
self.endpoint_name.as_deref()
}
/// <p>The MIME type of the input data in the request body.</p>
pub fn content_type(&self) -> std::option::Option<&str> {
self.content_type.as_deref()
}
/// <p>The desired MIME type of the inference in the response.</p>
pub fn accept(&self) -> std::option::Option<&str> {
self.accept.as_deref()
}
/// <p>Provides additional information about a request for an inference submitted to a model hosted at an Amazon SageMaker endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to provide an ID that you can use to track a request or to provide other metadata that a service endpoint was programmed to process. The value must consist of no more than 1024 visible US-ASCII characters as specified in <a href="https://datatracker.ietf.org/doc/html/rfc7230#section-3.2.6">Section 3.3.6. Field Value Components</a> of the Hypertext Transfer Protocol (HTTP/1.1). </p>
/// <p>The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with <code>Trace ID</code>: in your post-processing function. </p>
/// <p>This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker Python SDK. </p>
pub fn custom_attributes(&self) -> std::option::Option<&str> {
self.custom_attributes.as_deref()
}
/// <p>The identifier for the inference request. Amazon SageMaker will generate an identifier for you if none is specified. </p>
pub fn inference_id(&self) -> std::option::Option<&str> {
self.inference_id.as_deref()
}
/// <p>The Amazon S3 URI where the inference request payload is stored.</p>
pub fn input_location(&self) -> std::option::Option<&str> {
self.input_location.as_deref()
}
/// <p>Maximum age in seconds a request can be in the queue before it is marked as expired.</p>
pub fn request_ttl_seconds(&self) -> std::option::Option<i32> {
self.request_ttl_seconds
}
}
impl std::fmt::Debug for InvokeEndpointAsyncInput {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let mut formatter = f.debug_struct("InvokeEndpointAsyncInput");
formatter.field("endpoint_name", &self.endpoint_name);
formatter.field("content_type", &self.content_type);
formatter.field("accept", &self.accept);
formatter.field("custom_attributes", &"*** Sensitive Data Redacted ***");
formatter.field("inference_id", &self.inference_id);
formatter.field("input_location", &self.input_location);
formatter.field("request_ttl_seconds", &self.request_ttl_seconds);
formatter.finish()
}
}
#[allow(missing_docs)] // documentation missing in model
#[non_exhaustive]
#[derive(std::clone::Clone, std::cmp::PartialEq)]
pub struct InvokeEndpointInput {
/// <p>The name of the endpoint that you specified when you created the endpoint using the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpoint.html">CreateEndpoint</a> API. </p>
pub endpoint_name: std::option::Option<std::string::String>,
/// <p>Provides input data, in the format specified in the <code>ContentType</code> request header. Amazon SageMaker passes all of the data in the body to the model. </p>
/// <p>For information about the format of the request body, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html">Common Data Formats-Inference</a>.</p>
pub body: std::option::Option<aws_smithy_types::Blob>,
/// <p>The MIME type of the input data in the request body.</p>
pub content_type: std::option::Option<std::string::String>,
/// <p>The desired MIME type of the inference in the response.</p>
pub accept: std::option::Option<std::string::String>,
/// <p>Provides additional information about a request for an inference submitted to a model hosted at an Amazon SageMaker endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to provide an ID that you can use to track a request or to provide other metadata that a service endpoint was programmed to process. The value must consist of no more than 1024 visible US-ASCII characters as specified in <a href="https://tools.ietf.org/html/rfc7230#section-3.2.6">Section 3.3.6. Field Value Components</a> of the Hypertext Transfer Protocol (HTTP/1.1). </p>
/// <p>The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with <code>Trace ID:</code> in your post-processing function.</p>
/// <p>This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker Python SDK.</p>
pub custom_attributes: std::option::Option<std::string::String>,
/// <p>The model to request for inference when invoking a multi-model endpoint.</p>
pub target_model: std::option::Option<std::string::String>,
/// <p>Specify the production variant to send the inference request to when invoking an endpoint that is running two or more variants. Note that this parameter overrides the default behavior for the endpoint, which is to distribute the invocation traffic based on the variant weights.</p>
/// <p>For information about how to use variant targeting to perform a/b testing, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-ab-testing.html">Test models in production</a> </p>
pub target_variant: std::option::Option<std::string::String>,
/// <p>If the endpoint hosts multiple containers and is configured to use direct invocation, this parameter specifies the host name of the container to invoke.</p>
pub target_container_hostname: std::option::Option<std::string::String>,
/// <p>If you provide a value, it is added to the captured data when you enable data capture on the endpoint. For information about data capture, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-capture.html">Capture Data</a>.</p>
pub inference_id: std::option::Option<std::string::String>,
}
impl InvokeEndpointInput {
/// <p>The name of the endpoint that you specified when you created the endpoint using the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpoint.html">CreateEndpoint</a> API. </p>
pub fn endpoint_name(&self) -> std::option::Option<&str> {
self.endpoint_name.as_deref()
}
/// <p>Provides input data, in the format specified in the <code>ContentType</code> request header. Amazon SageMaker passes all of the data in the body to the model. </p>
/// <p>For information about the format of the request body, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html">Common Data Formats-Inference</a>.</p>
pub fn body(&self) -> std::option::Option<&aws_smithy_types::Blob> {
self.body.as_ref()
}
/// <p>The MIME type of the input data in the request body.</p>
pub fn content_type(&self) -> std::option::Option<&str> {
self.content_type.as_deref()
}
/// <p>The desired MIME type of the inference in the response.</p>
pub fn accept(&self) -> std::option::Option<&str> {
self.accept.as_deref()
}
/// <p>Provides additional information about a request for an inference submitted to a model hosted at an Amazon SageMaker endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to provide an ID that you can use to track a request or to provide other metadata that a service endpoint was programmed to process. The value must consist of no more than 1024 visible US-ASCII characters as specified in <a href="https://tools.ietf.org/html/rfc7230#section-3.2.6">Section 3.3.6. Field Value Components</a> of the Hypertext Transfer Protocol (HTTP/1.1). </p>
/// <p>The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with <code>Trace ID:</code> in your post-processing function.</p>
/// <p>This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker Python SDK.</p>
pub fn custom_attributes(&self) -> std::option::Option<&str> {
self.custom_attributes.as_deref()
}
/// <p>The model to request for inference when invoking a multi-model endpoint.</p>
pub fn target_model(&self) -> std::option::Option<&str> {
self.target_model.as_deref()
}
/// <p>Specify the production variant to send the inference request to when invoking an endpoint that is running two or more variants. Note that this parameter overrides the default behavior for the endpoint, which is to distribute the invocation traffic based on the variant weights.</p>
/// <p>For information about how to use variant targeting to perform a/b testing, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-ab-testing.html">Test models in production</a> </p>
pub fn target_variant(&self) -> std::option::Option<&str> {
self.target_variant.as_deref()
}
/// <p>If the endpoint hosts multiple containers and is configured to use direct invocation, this parameter specifies the host name of the container to invoke.</p>
pub fn target_container_hostname(&self) -> std::option::Option<&str> {
self.target_container_hostname.as_deref()
}
/// <p>If you provide a value, it is added to the captured data when you enable data capture on the endpoint. For information about data capture, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-capture.html">Capture Data</a>.</p>
pub fn inference_id(&self) -> std::option::Option<&str> {
self.inference_id.as_deref()
}
}
impl std::fmt::Debug for InvokeEndpointInput {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let mut formatter = f.debug_struct("InvokeEndpointInput");
formatter.field("endpoint_name", &self.endpoint_name);
formatter.field("body", &"*** Sensitive Data Redacted ***");
formatter.field("content_type", &self.content_type);
formatter.field("accept", &self.accept);
formatter.field("custom_attributes", &"*** Sensitive Data Redacted ***");
formatter.field("target_model", &self.target_model);
formatter.field("target_variant", &self.target_variant);
formatter.field("target_container_hostname", &self.target_container_hostname);
formatter.field("inference_id", &self.inference_id);
formatter.finish()
}
}