aws_sdk_sagemaker/operation/create_inference_experiment/builders.rs
1// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
2pub use crate::operation::create_inference_experiment::_create_inference_experiment_output::CreateInferenceExperimentOutputBuilder;
3
4pub use crate::operation::create_inference_experiment::_create_inference_experiment_input::CreateInferenceExperimentInputBuilder;
5
6impl crate::operation::create_inference_experiment::builders::CreateInferenceExperimentInputBuilder {
7 /// Sends a request with this input using the given client.
8 pub async fn send_with(
9 self,
10 client: &crate::Client,
11 ) -> ::std::result::Result<
12 crate::operation::create_inference_experiment::CreateInferenceExperimentOutput,
13 ::aws_smithy_runtime_api::client::result::SdkError<
14 crate::operation::create_inference_experiment::CreateInferenceExperimentError,
15 ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
16 >,
17 > {
18 let mut fluent_builder = client.create_inference_experiment();
19 fluent_builder.inner = self;
20 fluent_builder.send().await
21 }
22}
23/// Fluent builder constructing a request to `CreateInferenceExperiment`.
24///
25/// <p>Creates an inference experiment using the configurations specified in the request.</p>
26/// <p>Use this API to setup and schedule an experiment to compare model variants on a Amazon SageMaker inference endpoint. For more information about inference experiments, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/shadow-tests.html">Shadow tests</a>.</p>
27/// <p>Amazon SageMaker begins your experiment at the scheduled time and routes traffic to your endpoint's model variants based on your specified configuration.</p>
28/// <p>While the experiment is in progress or after it has concluded, you can view metrics that compare your model variants. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/shadow-tests-view-monitor-edit.html">View, monitor, and edit shadow tests</a>.</p>
29#[derive(::std::clone::Clone, ::std::fmt::Debug)]
30pub struct CreateInferenceExperimentFluentBuilder {
31 handle: ::std::sync::Arc<crate::client::Handle>,
32 inner: crate::operation::create_inference_experiment::builders::CreateInferenceExperimentInputBuilder,
33 config_override: ::std::option::Option<crate::config::Builder>,
34}
35impl
36 crate::client::customize::internal::CustomizableSend<
37 crate::operation::create_inference_experiment::CreateInferenceExperimentOutput,
38 crate::operation::create_inference_experiment::CreateInferenceExperimentError,
39 > for CreateInferenceExperimentFluentBuilder
40{
41 fn send(
42 self,
43 config_override: crate::config::Builder,
44 ) -> crate::client::customize::internal::BoxFuture<
45 crate::client::customize::internal::SendResult<
46 crate::operation::create_inference_experiment::CreateInferenceExperimentOutput,
47 crate::operation::create_inference_experiment::CreateInferenceExperimentError,
48 >,
49 > {
50 ::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
51 }
52}
53impl CreateInferenceExperimentFluentBuilder {
54 /// Creates a new `CreateInferenceExperimentFluentBuilder`.
55 pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
56 Self {
57 handle,
58 inner: ::std::default::Default::default(),
59 config_override: ::std::option::Option::None,
60 }
61 }
62 /// Access the CreateInferenceExperiment as a reference.
63 pub fn as_input(&self) -> &crate::operation::create_inference_experiment::builders::CreateInferenceExperimentInputBuilder {
64 &self.inner
65 }
66 /// Sends the request and returns the response.
67 ///
68 /// If an error occurs, an `SdkError` will be returned with additional details that
69 /// can be matched against.
70 ///
71 /// By default, any retryable failures will be retried twice. Retry behavior
72 /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
73 /// set when configuring the client.
74 pub async fn send(
75 self,
76 ) -> ::std::result::Result<
77 crate::operation::create_inference_experiment::CreateInferenceExperimentOutput,
78 ::aws_smithy_runtime_api::client::result::SdkError<
79 crate::operation::create_inference_experiment::CreateInferenceExperimentError,
80 ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
81 >,
82 > {
83 let input = self
84 .inner
85 .build()
86 .map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
87 let runtime_plugins = crate::operation::create_inference_experiment::CreateInferenceExperiment::operation_runtime_plugins(
88 self.handle.runtime_plugins.clone(),
89 &self.handle.conf,
90 self.config_override,
91 );
92 crate::operation::create_inference_experiment::CreateInferenceExperiment::orchestrate(&runtime_plugins, input).await
93 }
94
95 /// Consumes this builder, creating a customizable operation that can be modified before being sent.
96 pub fn customize(
97 self,
98 ) -> crate::client::customize::CustomizableOperation<
99 crate::operation::create_inference_experiment::CreateInferenceExperimentOutput,
100 crate::operation::create_inference_experiment::CreateInferenceExperimentError,
101 Self,
102 > {
103 crate::client::customize::CustomizableOperation::new(self)
104 }
105 pub(crate) fn config_override(mut self, config_override: impl ::std::convert::Into<crate::config::Builder>) -> Self {
106 self.set_config_override(::std::option::Option::Some(config_override.into()));
107 self
108 }
109
110 pub(crate) fn set_config_override(&mut self, config_override: ::std::option::Option<crate::config::Builder>) -> &mut Self {
111 self.config_override = config_override;
112 self
113 }
114 /// <p>The name for the inference experiment.</p>
115 pub fn name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
116 self.inner = self.inner.name(input.into());
117 self
118 }
119 /// <p>The name for the inference experiment.</p>
120 pub fn set_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
121 self.inner = self.inner.set_name(input);
122 self
123 }
124 /// <p>The name for the inference experiment.</p>
125 pub fn get_name(&self) -> &::std::option::Option<::std::string::String> {
126 self.inner.get_name()
127 }
128 /// <p>The type of the inference experiment that you want to run. The following types of experiments are possible:</p>
129 /// <ul>
130 /// <li>
131 /// <p><code>ShadowMode</code>: You can use this type to validate a shadow variant. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/shadow-tests.html">Shadow tests</a>.</p></li>
132 /// </ul>
133 pub fn r#type(mut self, input: crate::types::InferenceExperimentType) -> Self {
134 self.inner = self.inner.r#type(input);
135 self
136 }
137 /// <p>The type of the inference experiment that you want to run. The following types of experiments are possible:</p>
138 /// <ul>
139 /// <li>
140 /// <p><code>ShadowMode</code>: You can use this type to validate a shadow variant. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/shadow-tests.html">Shadow tests</a>.</p></li>
141 /// </ul>
142 pub fn set_type(mut self, input: ::std::option::Option<crate::types::InferenceExperimentType>) -> Self {
143 self.inner = self.inner.set_type(input);
144 self
145 }
146 /// <p>The type of the inference experiment that you want to run. The following types of experiments are possible:</p>
147 /// <ul>
148 /// <li>
149 /// <p><code>ShadowMode</code>: You can use this type to validate a shadow variant. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/shadow-tests.html">Shadow tests</a>.</p></li>
150 /// </ul>
151 pub fn get_type(&self) -> &::std::option::Option<crate::types::InferenceExperimentType> {
152 self.inner.get_type()
153 }
154 /// <p>The duration for which you want the inference experiment to run. If you don't specify this field, the experiment automatically starts immediately upon creation and concludes after 7 days.</p>
155 pub fn schedule(mut self, input: crate::types::InferenceExperimentSchedule) -> Self {
156 self.inner = self.inner.schedule(input);
157 self
158 }
159 /// <p>The duration for which you want the inference experiment to run. If you don't specify this field, the experiment automatically starts immediately upon creation and concludes after 7 days.</p>
160 pub fn set_schedule(mut self, input: ::std::option::Option<crate::types::InferenceExperimentSchedule>) -> Self {
161 self.inner = self.inner.set_schedule(input);
162 self
163 }
164 /// <p>The duration for which you want the inference experiment to run. If you don't specify this field, the experiment automatically starts immediately upon creation and concludes after 7 days.</p>
165 pub fn get_schedule(&self) -> &::std::option::Option<crate::types::InferenceExperimentSchedule> {
166 self.inner.get_schedule()
167 }
168 /// <p>A description for the inference experiment.</p>
169 pub fn description(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
170 self.inner = self.inner.description(input.into());
171 self
172 }
173 /// <p>A description for the inference experiment.</p>
174 pub fn set_description(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
175 self.inner = self.inner.set_description(input);
176 self
177 }
178 /// <p>A description for the inference experiment.</p>
179 pub fn get_description(&self) -> &::std::option::Option<::std::string::String> {
180 self.inner.get_description()
181 }
182 /// <p>The ARN of the IAM role that Amazon SageMaker can assume to access model artifacts and container images, and manage Amazon SageMaker Inference endpoints for model deployment.</p>
183 pub fn role_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
184 self.inner = self.inner.role_arn(input.into());
185 self
186 }
187 /// <p>The ARN of the IAM role that Amazon SageMaker can assume to access model artifacts and container images, and manage Amazon SageMaker Inference endpoints for model deployment.</p>
188 pub fn set_role_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
189 self.inner = self.inner.set_role_arn(input);
190 self
191 }
192 /// <p>The ARN of the IAM role that Amazon SageMaker can assume to access model artifacts and container images, and manage Amazon SageMaker Inference endpoints for model deployment.</p>
193 pub fn get_role_arn(&self) -> &::std::option::Option<::std::string::String> {
194 self.inner.get_role_arn()
195 }
196 /// <p>The name of the Amazon SageMaker endpoint on which you want to run the inference experiment.</p>
197 pub fn endpoint_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
198 self.inner = self.inner.endpoint_name(input.into());
199 self
200 }
201 /// <p>The name of the Amazon SageMaker endpoint on which you want to run the inference experiment.</p>
202 pub fn set_endpoint_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
203 self.inner = self.inner.set_endpoint_name(input);
204 self
205 }
206 /// <p>The name of the Amazon SageMaker endpoint on which you want to run the inference experiment.</p>
207 pub fn get_endpoint_name(&self) -> &::std::option::Option<::std::string::String> {
208 self.inner.get_endpoint_name()
209 }
210 ///
211 /// Appends an item to `ModelVariants`.
212 ///
213 /// To override the contents of this collection use [`set_model_variants`](Self::set_model_variants).
214 ///
215 /// <p>An array of <code>ModelVariantConfig</code> objects. There is one for each variant in the inference experiment. Each <code>ModelVariantConfig</code> object in the array describes the infrastructure configuration for the corresponding variant.</p>
216 pub fn model_variants(mut self, input: crate::types::ModelVariantConfig) -> Self {
217 self.inner = self.inner.model_variants(input);
218 self
219 }
220 /// <p>An array of <code>ModelVariantConfig</code> objects. There is one for each variant in the inference experiment. Each <code>ModelVariantConfig</code> object in the array describes the infrastructure configuration for the corresponding variant.</p>
221 pub fn set_model_variants(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::ModelVariantConfig>>) -> Self {
222 self.inner = self.inner.set_model_variants(input);
223 self
224 }
225 /// <p>An array of <code>ModelVariantConfig</code> objects. There is one for each variant in the inference experiment. Each <code>ModelVariantConfig</code> object in the array describes the infrastructure configuration for the corresponding variant.</p>
226 pub fn get_model_variants(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::ModelVariantConfig>> {
227 self.inner.get_model_variants()
228 }
229 /// <p>The Amazon S3 location and configuration for storing inference request and response data.</p>
230 /// <p>This is an optional parameter that you can use for data capture. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-capture.html">Capture data</a>.</p>
231 pub fn data_storage_config(mut self, input: crate::types::InferenceExperimentDataStorageConfig) -> Self {
232 self.inner = self.inner.data_storage_config(input);
233 self
234 }
235 /// <p>The Amazon S3 location and configuration for storing inference request and response data.</p>
236 /// <p>This is an optional parameter that you can use for data capture. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-capture.html">Capture data</a>.</p>
237 pub fn set_data_storage_config(mut self, input: ::std::option::Option<crate::types::InferenceExperimentDataStorageConfig>) -> Self {
238 self.inner = self.inner.set_data_storage_config(input);
239 self
240 }
241 /// <p>The Amazon S3 location and configuration for storing inference request and response data.</p>
242 /// <p>This is an optional parameter that you can use for data capture. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-capture.html">Capture data</a>.</p>
243 pub fn get_data_storage_config(&self) -> &::std::option::Option<crate::types::InferenceExperimentDataStorageConfig> {
244 self.inner.get_data_storage_config()
245 }
246 /// <p>The configuration of <code>ShadowMode</code> inference experiment type. Use this field to specify a production variant which takes all the inference requests, and a shadow variant to which Amazon SageMaker replicates a percentage of the inference requests. For the shadow variant also specify the percentage of requests that Amazon SageMaker replicates.</p>
247 pub fn shadow_mode_config(mut self, input: crate::types::ShadowModeConfig) -> Self {
248 self.inner = self.inner.shadow_mode_config(input);
249 self
250 }
251 /// <p>The configuration of <code>ShadowMode</code> inference experiment type. Use this field to specify a production variant which takes all the inference requests, and a shadow variant to which Amazon SageMaker replicates a percentage of the inference requests. For the shadow variant also specify the percentage of requests that Amazon SageMaker replicates.</p>
252 pub fn set_shadow_mode_config(mut self, input: ::std::option::Option<crate::types::ShadowModeConfig>) -> Self {
253 self.inner = self.inner.set_shadow_mode_config(input);
254 self
255 }
256 /// <p>The configuration of <code>ShadowMode</code> inference experiment type. Use this field to specify a production variant which takes all the inference requests, and a shadow variant to which Amazon SageMaker replicates a percentage of the inference requests. For the shadow variant also specify the percentage of requests that Amazon SageMaker replicates.</p>
257 pub fn get_shadow_mode_config(&self) -> &::std::option::Option<crate::types::ShadowModeConfig> {
258 self.inner.get_shadow_mode_config()
259 }
260 /// <p>The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint. The <code>KmsKey</code> can be any of the following formats:</p>
261 /// <ul>
262 /// <li>
263 /// <p>KMS key ID</p>
264 /// <p><code>"1234abcd-12ab-34cd-56ef-1234567890ab"</code></p></li>
265 /// <li>
266 /// <p>Amazon Resource Name (ARN) of a KMS key</p>
267 /// <p><code>"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"</code></p></li>
268 /// <li>
269 /// <p>KMS key Alias</p>
270 /// <p><code>"alias/ExampleAlias"</code></p></li>
271 /// <li>
272 /// <p>Amazon Resource Name (ARN) of a KMS key Alias</p>
273 /// <p><code>"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"</code></p></li>
274 /// </ul>
275 /// <p>If you use a KMS key ID or an alias of your KMS key, the Amazon SageMaker execution role must include permissions to call <code>kms:Encrypt</code>. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side encryption with KMS managed keys for <code>OutputDataConfig</code>. If you use a bucket policy with an <code>s3:PutObject</code> permission that only allows objects with server-side encryption, set the condition key of <code>s3:x-amz-server-side-encryption</code> to <code>"aws:kms"</code>. For more information, see <a href="https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html">KMS managed Encryption Keys</a> in the <i>Amazon Simple Storage Service Developer Guide.</i></p>
276 /// <p>The KMS key policy must grant permission to the IAM role that you specify in your <code>CreateEndpoint</code> and <code>UpdateEndpoint</code> requests. For more information, see <a href="https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html">Using Key Policies in Amazon Web Services KMS</a> in the <i>Amazon Web Services Key Management Service Developer Guide</i>.</p>
277 pub fn kms_key(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
278 self.inner = self.inner.kms_key(input.into());
279 self
280 }
281 /// <p>The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint. The <code>KmsKey</code> can be any of the following formats:</p>
282 /// <ul>
283 /// <li>
284 /// <p>KMS key ID</p>
285 /// <p><code>"1234abcd-12ab-34cd-56ef-1234567890ab"</code></p></li>
286 /// <li>
287 /// <p>Amazon Resource Name (ARN) of a KMS key</p>
288 /// <p><code>"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"</code></p></li>
289 /// <li>
290 /// <p>KMS key Alias</p>
291 /// <p><code>"alias/ExampleAlias"</code></p></li>
292 /// <li>
293 /// <p>Amazon Resource Name (ARN) of a KMS key Alias</p>
294 /// <p><code>"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"</code></p></li>
295 /// </ul>
296 /// <p>If you use a KMS key ID or an alias of your KMS key, the Amazon SageMaker execution role must include permissions to call <code>kms:Encrypt</code>. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side encryption with KMS managed keys for <code>OutputDataConfig</code>. If you use a bucket policy with an <code>s3:PutObject</code> permission that only allows objects with server-side encryption, set the condition key of <code>s3:x-amz-server-side-encryption</code> to <code>"aws:kms"</code>. For more information, see <a href="https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html">KMS managed Encryption Keys</a> in the <i>Amazon Simple Storage Service Developer Guide.</i></p>
297 /// <p>The KMS key policy must grant permission to the IAM role that you specify in your <code>CreateEndpoint</code> and <code>UpdateEndpoint</code> requests. For more information, see <a href="https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html">Using Key Policies in Amazon Web Services KMS</a> in the <i>Amazon Web Services Key Management Service Developer Guide</i>.</p>
298 pub fn set_kms_key(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
299 self.inner = self.inner.set_kms_key(input);
300 self
301 }
302 /// <p>The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint. The <code>KmsKey</code> can be any of the following formats:</p>
303 /// <ul>
304 /// <li>
305 /// <p>KMS key ID</p>
306 /// <p><code>"1234abcd-12ab-34cd-56ef-1234567890ab"</code></p></li>
307 /// <li>
308 /// <p>Amazon Resource Name (ARN) of a KMS key</p>
309 /// <p><code>"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"</code></p></li>
310 /// <li>
311 /// <p>KMS key Alias</p>
312 /// <p><code>"alias/ExampleAlias"</code></p></li>
313 /// <li>
314 /// <p>Amazon Resource Name (ARN) of a KMS key Alias</p>
315 /// <p><code>"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"</code></p></li>
316 /// </ul>
317 /// <p>If you use a KMS key ID or an alias of your KMS key, the Amazon SageMaker execution role must include permissions to call <code>kms:Encrypt</code>. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side encryption with KMS managed keys for <code>OutputDataConfig</code>. If you use a bucket policy with an <code>s3:PutObject</code> permission that only allows objects with server-side encryption, set the condition key of <code>s3:x-amz-server-side-encryption</code> to <code>"aws:kms"</code>. For more information, see <a href="https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html">KMS managed Encryption Keys</a> in the <i>Amazon Simple Storage Service Developer Guide.</i></p>
318 /// <p>The KMS key policy must grant permission to the IAM role that you specify in your <code>CreateEndpoint</code> and <code>UpdateEndpoint</code> requests. For more information, see <a href="https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html">Using Key Policies in Amazon Web Services KMS</a> in the <i>Amazon Web Services Key Management Service Developer Guide</i>.</p>
319 pub fn get_kms_key(&self) -> &::std::option::Option<::std::string::String> {
320 self.inner.get_kms_key()
321 }
322 ///
323 /// Appends an item to `Tags`.
324 ///
325 /// To override the contents of this collection use [`set_tags`](Self::set_tags).
326 ///
327 /// <p>Array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/ARG/latest/userguide/tagging.html">Tagging your Amazon Web Services Resources</a>.</p>
328 pub fn tags(mut self, input: crate::types::Tag) -> Self {
329 self.inner = self.inner.tags(input);
330 self
331 }
332 /// <p>Array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/ARG/latest/userguide/tagging.html">Tagging your Amazon Web Services Resources</a>.</p>
333 pub fn set_tags(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>) -> Self {
334 self.inner = self.inner.set_tags(input);
335 self
336 }
337 /// <p>Array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/ARG/latest/userguide/tagging.html">Tagging your Amazon Web Services Resources</a>.</p>
338 pub fn get_tags(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Tag>> {
339 self.inner.get_tags()
340 }
341}