aws_sdk_sagemaker/operation/create_algorithm/builders.rs
1// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
2pub use crate::operation::create_algorithm::_create_algorithm_output::CreateAlgorithmOutputBuilder;
3
4pub use crate::operation::create_algorithm::_create_algorithm_input::CreateAlgorithmInputBuilder;
5
6impl crate::operation::create_algorithm::builders::CreateAlgorithmInputBuilder {
7 /// Sends a request with this input using the given client.
8 pub async fn send_with(
9 self,
10 client: &crate::Client,
11 ) -> ::std::result::Result<
12 crate::operation::create_algorithm::CreateAlgorithmOutput,
13 ::aws_smithy_runtime_api::client::result::SdkError<
14 crate::operation::create_algorithm::CreateAlgorithmError,
15 ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
16 >,
17 > {
18 let mut fluent_builder = client.create_algorithm();
19 fluent_builder.inner = self;
20 fluent_builder.send().await
21 }
22}
23/// Fluent builder constructing a request to `CreateAlgorithm`.
24///
25/// <p>Create a machine learning algorithm that you can use in SageMaker and list in the Amazon Web Services Marketplace.</p>
26#[derive(::std::clone::Clone, ::std::fmt::Debug)]
27pub struct CreateAlgorithmFluentBuilder {
28 handle: ::std::sync::Arc<crate::client::Handle>,
29 inner: crate::operation::create_algorithm::builders::CreateAlgorithmInputBuilder,
30 config_override: ::std::option::Option<crate::config::Builder>,
31}
32impl
33 crate::client::customize::internal::CustomizableSend<
34 crate::operation::create_algorithm::CreateAlgorithmOutput,
35 crate::operation::create_algorithm::CreateAlgorithmError,
36 > for CreateAlgorithmFluentBuilder
37{
38 fn send(
39 self,
40 config_override: crate::config::Builder,
41 ) -> crate::client::customize::internal::BoxFuture<
42 crate::client::customize::internal::SendResult<
43 crate::operation::create_algorithm::CreateAlgorithmOutput,
44 crate::operation::create_algorithm::CreateAlgorithmError,
45 >,
46 > {
47 ::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
48 }
49}
50impl CreateAlgorithmFluentBuilder {
51 /// Creates a new `CreateAlgorithmFluentBuilder`.
52 pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
53 Self {
54 handle,
55 inner: ::std::default::Default::default(),
56 config_override: ::std::option::Option::None,
57 }
58 }
59 /// Access the CreateAlgorithm as a reference.
60 pub fn as_input(&self) -> &crate::operation::create_algorithm::builders::CreateAlgorithmInputBuilder {
61 &self.inner
62 }
63 /// Sends the request and returns the response.
64 ///
65 /// If an error occurs, an `SdkError` will be returned with additional details that
66 /// can be matched against.
67 ///
68 /// By default, any retryable failures will be retried twice. Retry behavior
69 /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
70 /// set when configuring the client.
71 pub async fn send(
72 self,
73 ) -> ::std::result::Result<
74 crate::operation::create_algorithm::CreateAlgorithmOutput,
75 ::aws_smithy_runtime_api::client::result::SdkError<
76 crate::operation::create_algorithm::CreateAlgorithmError,
77 ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
78 >,
79 > {
80 let input = self
81 .inner
82 .build()
83 .map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
84 let runtime_plugins = crate::operation::create_algorithm::CreateAlgorithm::operation_runtime_plugins(
85 self.handle.runtime_plugins.clone(),
86 &self.handle.conf,
87 self.config_override,
88 );
89 crate::operation::create_algorithm::CreateAlgorithm::orchestrate(&runtime_plugins, input).await
90 }
91
92 /// Consumes this builder, creating a customizable operation that can be modified before being sent.
93 pub fn customize(
94 self,
95 ) -> crate::client::customize::CustomizableOperation<
96 crate::operation::create_algorithm::CreateAlgorithmOutput,
97 crate::operation::create_algorithm::CreateAlgorithmError,
98 Self,
99 > {
100 crate::client::customize::CustomizableOperation::new(self)
101 }
102 pub(crate) fn config_override(mut self, config_override: impl ::std::convert::Into<crate::config::Builder>) -> Self {
103 self.set_config_override(::std::option::Option::Some(config_override.into()));
104 self
105 }
106
107 pub(crate) fn set_config_override(&mut self, config_override: ::std::option::Option<crate::config::Builder>) -> &mut Self {
108 self.config_override = config_override;
109 self
110 }
111 /// <p>The name of the algorithm.</p>
112 pub fn algorithm_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
113 self.inner = self.inner.algorithm_name(input.into());
114 self
115 }
116 /// <p>The name of the algorithm.</p>
117 pub fn set_algorithm_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
118 self.inner = self.inner.set_algorithm_name(input);
119 self
120 }
121 /// <p>The name of the algorithm.</p>
122 pub fn get_algorithm_name(&self) -> &::std::option::Option<::std::string::String> {
123 self.inner.get_algorithm_name()
124 }
125 /// <p>A description of the algorithm.</p>
126 pub fn algorithm_description(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
127 self.inner = self.inner.algorithm_description(input.into());
128 self
129 }
130 /// <p>A description of the algorithm.</p>
131 pub fn set_algorithm_description(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
132 self.inner = self.inner.set_algorithm_description(input);
133 self
134 }
135 /// <p>A description of the algorithm.</p>
136 pub fn get_algorithm_description(&self) -> &::std::option::Option<::std::string::String> {
137 self.inner.get_algorithm_description()
138 }
139 /// <p>Specifies details about training jobs run by this algorithm, including the following:</p>
140 /// <ul>
141 /// <li>
142 /// <p>The Amazon ECR path of the container and the version digest of the algorithm.</p></li>
143 /// <li>
144 /// <p>The hyperparameters that the algorithm supports.</p></li>
145 /// <li>
146 /// <p>The instance types that the algorithm supports for training.</p></li>
147 /// <li>
148 /// <p>Whether the algorithm supports distributed training.</p></li>
149 /// <li>
150 /// <p>The metrics that the algorithm emits to Amazon CloudWatch.</p></li>
151 /// <li>
152 /// <p>Which metrics that the algorithm emits can be used as the objective metric for hyperparameter tuning jobs.</p></li>
153 /// <li>
154 /// <p>The input channels that the algorithm supports for training data. For example, an algorithm might support <code>train</code>, <code>validation</code>, and <code>test</code> channels.</p></li>
155 /// </ul>
156 pub fn training_specification(mut self, input: crate::types::TrainingSpecification) -> Self {
157 self.inner = self.inner.training_specification(input);
158 self
159 }
160 /// <p>Specifies details about training jobs run by this algorithm, including the following:</p>
161 /// <ul>
162 /// <li>
163 /// <p>The Amazon ECR path of the container and the version digest of the algorithm.</p></li>
164 /// <li>
165 /// <p>The hyperparameters that the algorithm supports.</p></li>
166 /// <li>
167 /// <p>The instance types that the algorithm supports for training.</p></li>
168 /// <li>
169 /// <p>Whether the algorithm supports distributed training.</p></li>
170 /// <li>
171 /// <p>The metrics that the algorithm emits to Amazon CloudWatch.</p></li>
172 /// <li>
173 /// <p>Which metrics that the algorithm emits can be used as the objective metric for hyperparameter tuning jobs.</p></li>
174 /// <li>
175 /// <p>The input channels that the algorithm supports for training data. For example, an algorithm might support <code>train</code>, <code>validation</code>, and <code>test</code> channels.</p></li>
176 /// </ul>
177 pub fn set_training_specification(mut self, input: ::std::option::Option<crate::types::TrainingSpecification>) -> Self {
178 self.inner = self.inner.set_training_specification(input);
179 self
180 }
181 /// <p>Specifies details about training jobs run by this algorithm, including the following:</p>
182 /// <ul>
183 /// <li>
184 /// <p>The Amazon ECR path of the container and the version digest of the algorithm.</p></li>
185 /// <li>
186 /// <p>The hyperparameters that the algorithm supports.</p></li>
187 /// <li>
188 /// <p>The instance types that the algorithm supports for training.</p></li>
189 /// <li>
190 /// <p>Whether the algorithm supports distributed training.</p></li>
191 /// <li>
192 /// <p>The metrics that the algorithm emits to Amazon CloudWatch.</p></li>
193 /// <li>
194 /// <p>Which metrics that the algorithm emits can be used as the objective metric for hyperparameter tuning jobs.</p></li>
195 /// <li>
196 /// <p>The input channels that the algorithm supports for training data. For example, an algorithm might support <code>train</code>, <code>validation</code>, and <code>test</code> channels.</p></li>
197 /// </ul>
198 pub fn get_training_specification(&self) -> &::std::option::Option<crate::types::TrainingSpecification> {
199 self.inner.get_training_specification()
200 }
201 /// <p>Specifies details about inference jobs that the algorithm runs, including the following:</p>
202 /// <ul>
203 /// <li>
204 /// <p>The Amazon ECR paths of containers that contain the inference code and model artifacts.</p></li>
205 /// <li>
206 /// <p>The instance types that the algorithm supports for transform jobs and real-time endpoints used for inference.</p></li>
207 /// <li>
208 /// <p>The input and output content formats that the algorithm supports for inference.</p></li>
209 /// </ul>
210 pub fn inference_specification(mut self, input: crate::types::InferenceSpecification) -> Self {
211 self.inner = self.inner.inference_specification(input);
212 self
213 }
214 /// <p>Specifies details about inference jobs that the algorithm runs, including the following:</p>
215 /// <ul>
216 /// <li>
217 /// <p>The Amazon ECR paths of containers that contain the inference code and model artifacts.</p></li>
218 /// <li>
219 /// <p>The instance types that the algorithm supports for transform jobs and real-time endpoints used for inference.</p></li>
220 /// <li>
221 /// <p>The input and output content formats that the algorithm supports for inference.</p></li>
222 /// </ul>
223 pub fn set_inference_specification(mut self, input: ::std::option::Option<crate::types::InferenceSpecification>) -> Self {
224 self.inner = self.inner.set_inference_specification(input);
225 self
226 }
227 /// <p>Specifies details about inference jobs that the algorithm runs, including the following:</p>
228 /// <ul>
229 /// <li>
230 /// <p>The Amazon ECR paths of containers that contain the inference code and model artifacts.</p></li>
231 /// <li>
232 /// <p>The instance types that the algorithm supports for transform jobs and real-time endpoints used for inference.</p></li>
233 /// <li>
234 /// <p>The input and output content formats that the algorithm supports for inference.</p></li>
235 /// </ul>
236 pub fn get_inference_specification(&self) -> &::std::option::Option<crate::types::InferenceSpecification> {
237 self.inner.get_inference_specification()
238 }
239 /// <p>Specifies configurations for one or more training jobs and that SageMaker runs to test the algorithm's training code and, optionally, one or more batch transform jobs that SageMaker runs to test the algorithm's inference code.</p>
240 pub fn validation_specification(mut self, input: crate::types::AlgorithmValidationSpecification) -> Self {
241 self.inner = self.inner.validation_specification(input);
242 self
243 }
244 /// <p>Specifies configurations for one or more training jobs and that SageMaker runs to test the algorithm's training code and, optionally, one or more batch transform jobs that SageMaker runs to test the algorithm's inference code.</p>
245 pub fn set_validation_specification(mut self, input: ::std::option::Option<crate::types::AlgorithmValidationSpecification>) -> Self {
246 self.inner = self.inner.set_validation_specification(input);
247 self
248 }
249 /// <p>Specifies configurations for one or more training jobs and that SageMaker runs to test the algorithm's training code and, optionally, one or more batch transform jobs that SageMaker runs to test the algorithm's inference code.</p>
250 pub fn get_validation_specification(&self) -> &::std::option::Option<crate::types::AlgorithmValidationSpecification> {
251 self.inner.get_validation_specification()
252 }
253 /// <p>Whether to certify the algorithm so that it can be listed in Amazon Web Services Marketplace.</p>
254 pub fn certify_for_marketplace(mut self, input: bool) -> Self {
255 self.inner = self.inner.certify_for_marketplace(input);
256 self
257 }
258 /// <p>Whether to certify the algorithm so that it can be listed in Amazon Web Services Marketplace.</p>
259 pub fn set_certify_for_marketplace(mut self, input: ::std::option::Option<bool>) -> Self {
260 self.inner = self.inner.set_certify_for_marketplace(input);
261 self
262 }
263 /// <p>Whether to certify the algorithm so that it can be listed in Amazon Web Services Marketplace.</p>
264 pub fn get_certify_for_marketplace(&self) -> &::std::option::Option<bool> {
265 self.inner.get_certify_for_marketplace()
266 }
267 ///
268 /// Appends an item to `Tags`.
269 ///
270 /// To override the contents of this collection use [`set_tags`](Self::set_tags).
271 ///
272 /// <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services Resources</a>.</p>
273 pub fn tags(mut self, input: crate::types::Tag) -> Self {
274 self.inner = self.inner.tags(input);
275 self
276 }
277 /// <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services Resources</a>.</p>
278 pub fn set_tags(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>) -> Self {
279 self.inner = self.inner.set_tags(input);
280 self
281 }
282 /// <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services Resources</a>.</p>
283 pub fn get_tags(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Tag>> {
284 self.inner.get_tags()
285 }
286}