aws_sdk_sagemaker/operation/create_optimization_job/builders.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use crate::operation::create_optimization_job::_create_optimization_job_output::CreateOptimizationJobOutputBuilder;
pub use crate::operation::create_optimization_job::_create_optimization_job_input::CreateOptimizationJobInputBuilder;
impl crate::operation::create_optimization_job::builders::CreateOptimizationJobInputBuilder {
/// Sends a request with this input using the given client.
pub async fn send_with(
self,
client: &crate::Client,
) -> ::std::result::Result<
crate::operation::create_optimization_job::CreateOptimizationJobOutput,
::aws_smithy_runtime_api::client::result::SdkError<
crate::operation::create_optimization_job::CreateOptimizationJobError,
::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
>,
> {
let mut fluent_builder = client.create_optimization_job();
fluent_builder.inner = self;
fluent_builder.send().await
}
}
/// Fluent builder constructing a request to `CreateOptimizationJob`.
///
/// <p>Creates a job that optimizes a model for inference performance. To create the job, you provide the location of a source model, and you provide the settings for the optimization techniques that you want the job to apply. When the job completes successfully, SageMaker uploads the new optimized model to the output destination that you specify.</p>
/// <p>For more information about how to use this action, and about the supported optimization techniques, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-optimize.html">Optimize model inference with Amazon SageMaker</a>.</p>
#[derive(::std::clone::Clone, ::std::fmt::Debug)]
pub struct CreateOptimizationJobFluentBuilder {
handle: ::std::sync::Arc<crate::client::Handle>,
inner: crate::operation::create_optimization_job::builders::CreateOptimizationJobInputBuilder,
config_override: ::std::option::Option<crate::config::Builder>,
}
impl
crate::client::customize::internal::CustomizableSend<
crate::operation::create_optimization_job::CreateOptimizationJobOutput,
crate::operation::create_optimization_job::CreateOptimizationJobError,
> for CreateOptimizationJobFluentBuilder
{
fn send(
self,
config_override: crate::config::Builder,
) -> crate::client::customize::internal::BoxFuture<
crate::client::customize::internal::SendResult<
crate::operation::create_optimization_job::CreateOptimizationJobOutput,
crate::operation::create_optimization_job::CreateOptimizationJobError,
>,
> {
::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
}
}
impl CreateOptimizationJobFluentBuilder {
/// Creates a new `CreateOptimizationJobFluentBuilder`.
pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
Self {
handle,
inner: ::std::default::Default::default(),
config_override: ::std::option::Option::None,
}
}
/// Access the CreateOptimizationJob as a reference.
pub fn as_input(&self) -> &crate::operation::create_optimization_job::builders::CreateOptimizationJobInputBuilder {
&self.inner
}
/// Sends the request and returns the response.
///
/// If an error occurs, an `SdkError` will be returned with additional details that
/// can be matched against.
///
/// By default, any retryable failures will be retried twice. Retry behavior
/// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
/// set when configuring the client.
pub async fn send(
self,
) -> ::std::result::Result<
crate::operation::create_optimization_job::CreateOptimizationJobOutput,
::aws_smithy_runtime_api::client::result::SdkError<
crate::operation::create_optimization_job::CreateOptimizationJobError,
::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
>,
> {
let input = self
.inner
.build()
.map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
let runtime_plugins = crate::operation::create_optimization_job::CreateOptimizationJob::operation_runtime_plugins(
self.handle.runtime_plugins.clone(),
&self.handle.conf,
self.config_override,
);
crate::operation::create_optimization_job::CreateOptimizationJob::orchestrate(&runtime_plugins, input).await
}
/// Consumes this builder, creating a customizable operation that can be modified before being sent.
pub fn customize(
self,
) -> crate::client::customize::CustomizableOperation<
crate::operation::create_optimization_job::CreateOptimizationJobOutput,
crate::operation::create_optimization_job::CreateOptimizationJobError,
Self,
> {
crate::client::customize::CustomizableOperation::new(self)
}
pub(crate) fn config_override(mut self, config_override: impl ::std::convert::Into<crate::config::Builder>) -> Self {
self.set_config_override(::std::option::Option::Some(config_override.into()));
self
}
pub(crate) fn set_config_override(&mut self, config_override: ::std::option::Option<crate::config::Builder>) -> &mut Self {
self.config_override = config_override;
self
}
/// <p>A custom name for the new optimization job.</p>
pub fn optimization_job_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.optimization_job_name(input.into());
self
}
/// <p>A custom name for the new optimization job.</p>
pub fn set_optimization_job_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_optimization_job_name(input);
self
}
/// <p>A custom name for the new optimization job.</p>
pub fn get_optimization_job_name(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_optimization_job_name()
}
/// <p>The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to perform tasks on your behalf.</p>
/// <p>During model optimization, Amazon SageMaker needs your permission to:</p>
/// <ul>
/// <li>
/// <p>Read input data from an S3 bucket</p></li>
/// <li>
/// <p>Write model artifacts to an S3 bucket</p></li>
/// <li>
/// <p>Write logs to Amazon CloudWatch Logs</p></li>
/// <li>
/// <p>Publish metrics to Amazon CloudWatch</p></li>
/// </ul>
/// <p>You grant permissions for all of these tasks to an IAM role. To pass this role to Amazon SageMaker, the caller of this API must have the <code>iam:PassRole</code> permission. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">Amazon SageMaker Roles.</a></p>
pub fn role_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.role_arn(input.into());
self
}
/// <p>The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to perform tasks on your behalf.</p>
/// <p>During model optimization, Amazon SageMaker needs your permission to:</p>
/// <ul>
/// <li>
/// <p>Read input data from an S3 bucket</p></li>
/// <li>
/// <p>Write model artifacts to an S3 bucket</p></li>
/// <li>
/// <p>Write logs to Amazon CloudWatch Logs</p></li>
/// <li>
/// <p>Publish metrics to Amazon CloudWatch</p></li>
/// </ul>
/// <p>You grant permissions for all of these tasks to an IAM role. To pass this role to Amazon SageMaker, the caller of this API must have the <code>iam:PassRole</code> permission. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">Amazon SageMaker Roles.</a></p>
pub fn set_role_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_role_arn(input);
self
}
/// <p>The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to perform tasks on your behalf.</p>
/// <p>During model optimization, Amazon SageMaker needs your permission to:</p>
/// <ul>
/// <li>
/// <p>Read input data from an S3 bucket</p></li>
/// <li>
/// <p>Write model artifacts to an S3 bucket</p></li>
/// <li>
/// <p>Write logs to Amazon CloudWatch Logs</p></li>
/// <li>
/// <p>Publish metrics to Amazon CloudWatch</p></li>
/// </ul>
/// <p>You grant permissions for all of these tasks to an IAM role. To pass this role to Amazon SageMaker, the caller of this API must have the <code>iam:PassRole</code> permission. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">Amazon SageMaker Roles.</a></p>
pub fn get_role_arn(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_role_arn()
}
/// <p>The location of the source model to optimize with an optimization job.</p>
pub fn model_source(mut self, input: crate::types::OptimizationJobModelSource) -> Self {
self.inner = self.inner.model_source(input);
self
}
/// <p>The location of the source model to optimize with an optimization job.</p>
pub fn set_model_source(mut self, input: ::std::option::Option<crate::types::OptimizationJobModelSource>) -> Self {
self.inner = self.inner.set_model_source(input);
self
}
/// <p>The location of the source model to optimize with an optimization job.</p>
pub fn get_model_source(&self) -> &::std::option::Option<crate::types::OptimizationJobModelSource> {
self.inner.get_model_source()
}
/// <p>The type of instance that hosts the optimized model that you create with the optimization job.</p>
pub fn deployment_instance_type(mut self, input: crate::types::OptimizationJobDeploymentInstanceType) -> Self {
self.inner = self.inner.deployment_instance_type(input);
self
}
/// <p>The type of instance that hosts the optimized model that you create with the optimization job.</p>
pub fn set_deployment_instance_type(mut self, input: ::std::option::Option<crate::types::OptimizationJobDeploymentInstanceType>) -> Self {
self.inner = self.inner.set_deployment_instance_type(input);
self
}
/// <p>The type of instance that hosts the optimized model that you create with the optimization job.</p>
pub fn get_deployment_instance_type(&self) -> &::std::option::Option<crate::types::OptimizationJobDeploymentInstanceType> {
self.inner.get_deployment_instance_type()
}
///
/// Adds a key-value pair to `OptimizationEnvironment`.
///
/// To override the contents of this collection use [`set_optimization_environment`](Self::set_optimization_environment).
///
/// <p>The environment variables to set in the model container.</p>
pub fn optimization_environment(
mut self,
k: impl ::std::convert::Into<::std::string::String>,
v: impl ::std::convert::Into<::std::string::String>,
) -> Self {
self.inner = self.inner.optimization_environment(k.into(), v.into());
self
}
/// <p>The environment variables to set in the model container.</p>
pub fn set_optimization_environment(
mut self,
input: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>,
) -> Self {
self.inner = self.inner.set_optimization_environment(input);
self
}
/// <p>The environment variables to set in the model container.</p>
pub fn get_optimization_environment(&self) -> &::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>> {
self.inner.get_optimization_environment()
}
///
/// Appends an item to `OptimizationConfigs`.
///
/// To override the contents of this collection use [`set_optimization_configs`](Self::set_optimization_configs).
///
/// <p>Settings for each of the optimization techniques that the job applies.</p>
pub fn optimization_configs(mut self, input: crate::types::OptimizationConfig) -> Self {
self.inner = self.inner.optimization_configs(input);
self
}
/// <p>Settings for each of the optimization techniques that the job applies.</p>
pub fn set_optimization_configs(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::OptimizationConfig>>) -> Self {
self.inner = self.inner.set_optimization_configs(input);
self
}
/// <p>Settings for each of the optimization techniques that the job applies.</p>
pub fn get_optimization_configs(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::OptimizationConfig>> {
self.inner.get_optimization_configs()
}
/// <p>Details for where to store the optimized model that you create with the optimization job.</p>
pub fn output_config(mut self, input: crate::types::OptimizationJobOutputConfig) -> Self {
self.inner = self.inner.output_config(input);
self
}
/// <p>Details for where to store the optimized model that you create with the optimization job.</p>
pub fn set_output_config(mut self, input: ::std::option::Option<crate::types::OptimizationJobOutputConfig>) -> Self {
self.inner = self.inner.set_output_config(input);
self
}
/// <p>Details for where to store the optimized model that you create with the optimization job.</p>
pub fn get_output_config(&self) -> &::std::option::Option<crate::types::OptimizationJobOutputConfig> {
self.inner.get_output_config()
}
/// <p>Specifies a limit to how long a job can run. When the job reaches the time limit, SageMaker ends the job. Use this API to cap costs.</p>
/// <p>To stop a training job, SageMaker sends the algorithm the <code>SIGTERM</code> signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.</p>
/// <p>The training algorithms provided by SageMaker automatically save the intermediate results of a model training job when possible. This attempt to save artifacts is only a best effort case as model might not be in a state from which it can be saved. For example, if training has just started, the model might not be ready to save. When saved, this intermediate data is a valid model artifact. You can use it to create a model with <code>CreateModel</code>.</p><note>
/// <p>The Neural Topic Model (NTM) currently does not support saving intermediate model artifacts. When training NTMs, make sure that the maximum runtime is sufficient for the training job to complete.</p>
/// </note>
pub fn stopping_condition(mut self, input: crate::types::StoppingCondition) -> Self {
self.inner = self.inner.stopping_condition(input);
self
}
/// <p>Specifies a limit to how long a job can run. When the job reaches the time limit, SageMaker ends the job. Use this API to cap costs.</p>
/// <p>To stop a training job, SageMaker sends the algorithm the <code>SIGTERM</code> signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.</p>
/// <p>The training algorithms provided by SageMaker automatically save the intermediate results of a model training job when possible. This attempt to save artifacts is only a best effort case as model might not be in a state from which it can be saved. For example, if training has just started, the model might not be ready to save. When saved, this intermediate data is a valid model artifact. You can use it to create a model with <code>CreateModel</code>.</p><note>
/// <p>The Neural Topic Model (NTM) currently does not support saving intermediate model artifacts. When training NTMs, make sure that the maximum runtime is sufficient for the training job to complete.</p>
/// </note>
pub fn set_stopping_condition(mut self, input: ::std::option::Option<crate::types::StoppingCondition>) -> Self {
self.inner = self.inner.set_stopping_condition(input);
self
}
/// <p>Specifies a limit to how long a job can run. When the job reaches the time limit, SageMaker ends the job. Use this API to cap costs.</p>
/// <p>To stop a training job, SageMaker sends the algorithm the <code>SIGTERM</code> signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.</p>
/// <p>The training algorithms provided by SageMaker automatically save the intermediate results of a model training job when possible. This attempt to save artifacts is only a best effort case as model might not be in a state from which it can be saved. For example, if training has just started, the model might not be ready to save. When saved, this intermediate data is a valid model artifact. You can use it to create a model with <code>CreateModel</code>.</p><note>
/// <p>The Neural Topic Model (NTM) currently does not support saving intermediate model artifacts. When training NTMs, make sure that the maximum runtime is sufficient for the training job to complete.</p>
/// </note>
pub fn get_stopping_condition(&self) -> &::std::option::Option<crate::types::StoppingCondition> {
self.inner.get_stopping_condition()
}
///
/// Appends an item to `Tags`.
///
/// To override the contents of this collection use [`set_tags`](Self::set_tags).
///
/// <p>A list of key-value pairs associated with the optimization job. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services resources</a> in the <i>Amazon Web Services General Reference Guide</i>.</p>
pub fn tags(mut self, input: crate::types::Tag) -> Self {
self.inner = self.inner.tags(input);
self
}
/// <p>A list of key-value pairs associated with the optimization job. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services resources</a> in the <i>Amazon Web Services General Reference Guide</i>.</p>
pub fn set_tags(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>) -> Self {
self.inner = self.inner.set_tags(input);
self
}
/// <p>A list of key-value pairs associated with the optimization job. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services resources</a> in the <i>Amazon Web Services General Reference Guide</i>.</p>
pub fn get_tags(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Tag>> {
self.inner.get_tags()
}
/// <p>A VPC in Amazon VPC that your optimized model has access to.</p>
pub fn vpc_config(mut self, input: crate::types::OptimizationVpcConfig) -> Self {
self.inner = self.inner.vpc_config(input);
self
}
/// <p>A VPC in Amazon VPC that your optimized model has access to.</p>
pub fn set_vpc_config(mut self, input: ::std::option::Option<crate::types::OptimizationVpcConfig>) -> Self {
self.inner = self.inner.set_vpc_config(input);
self
}
/// <p>A VPC in Amazon VPC that your optimized model has access to.</p>
pub fn get_vpc_config(&self) -> &::std::option::Option<crate::types::OptimizationVpcConfig> {
self.inner.get_vpc_config()
}
}