aws_sdk_sagemaker/operation/create_mlflow_tracking_server/
builders.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use crate::operation::create_mlflow_tracking_server::_create_mlflow_tracking_server_output::CreateMlflowTrackingServerOutputBuilder;

pub use crate::operation::create_mlflow_tracking_server::_create_mlflow_tracking_server_input::CreateMlflowTrackingServerInputBuilder;

impl crate::operation::create_mlflow_tracking_server::builders::CreateMlflowTrackingServerInputBuilder {
    /// Sends a request with this input using the given client.
    pub async fn send_with(
        self,
        client: &crate::Client,
    ) -> ::std::result::Result<
        crate::operation::create_mlflow_tracking_server::CreateMlflowTrackingServerOutput,
        ::aws_smithy_runtime_api::client::result::SdkError<
            crate::operation::create_mlflow_tracking_server::CreateMlflowTrackingServerError,
            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
        >,
    > {
        let mut fluent_builder = client.create_mlflow_tracking_server();
        fluent_builder.inner = self;
        fluent_builder.send().await
    }
}
/// Fluent builder constructing a request to `CreateMlflowTrackingServer`.
///
/// <p>Creates an MLflow Tracking Server using a general purpose Amazon S3 bucket as the artifact store. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/mlflow-create-tracking-server.html">Create an MLflow Tracking Server</a>.</p>
#[derive(::std::clone::Clone, ::std::fmt::Debug)]
pub struct CreateMlflowTrackingServerFluentBuilder {
    handle: ::std::sync::Arc<crate::client::Handle>,
    inner: crate::operation::create_mlflow_tracking_server::builders::CreateMlflowTrackingServerInputBuilder,
    config_override: ::std::option::Option<crate::config::Builder>,
}
impl
    crate::client::customize::internal::CustomizableSend<
        crate::operation::create_mlflow_tracking_server::CreateMlflowTrackingServerOutput,
        crate::operation::create_mlflow_tracking_server::CreateMlflowTrackingServerError,
    > for CreateMlflowTrackingServerFluentBuilder
{
    fn send(
        self,
        config_override: crate::config::Builder,
    ) -> crate::client::customize::internal::BoxFuture<
        crate::client::customize::internal::SendResult<
            crate::operation::create_mlflow_tracking_server::CreateMlflowTrackingServerOutput,
            crate::operation::create_mlflow_tracking_server::CreateMlflowTrackingServerError,
        >,
    > {
        ::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
    }
}
impl CreateMlflowTrackingServerFluentBuilder {
    /// Creates a new `CreateMlflowTrackingServerFluentBuilder`.
    pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
        Self {
            handle,
            inner: ::std::default::Default::default(),
            config_override: ::std::option::Option::None,
        }
    }
    /// Access the CreateMlflowTrackingServer as a reference.
    pub fn as_input(&self) -> &crate::operation::create_mlflow_tracking_server::builders::CreateMlflowTrackingServerInputBuilder {
        &self.inner
    }
    /// Sends the request and returns the response.
    ///
    /// If an error occurs, an `SdkError` will be returned with additional details that
    /// can be matched against.
    ///
    /// By default, any retryable failures will be retried twice. Retry behavior
    /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
    /// set when configuring the client.
    pub async fn send(
        self,
    ) -> ::std::result::Result<
        crate::operation::create_mlflow_tracking_server::CreateMlflowTrackingServerOutput,
        ::aws_smithy_runtime_api::client::result::SdkError<
            crate::operation::create_mlflow_tracking_server::CreateMlflowTrackingServerError,
            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
        >,
    > {
        let input = self
            .inner
            .build()
            .map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
        let runtime_plugins = crate::operation::create_mlflow_tracking_server::CreateMlflowTrackingServer::operation_runtime_plugins(
            self.handle.runtime_plugins.clone(),
            &self.handle.conf,
            self.config_override,
        );
        crate::operation::create_mlflow_tracking_server::CreateMlflowTrackingServer::orchestrate(&runtime_plugins, input).await
    }

    /// Consumes this builder, creating a customizable operation that can be modified before being sent.
    pub fn customize(
        self,
    ) -> crate::client::customize::CustomizableOperation<
        crate::operation::create_mlflow_tracking_server::CreateMlflowTrackingServerOutput,
        crate::operation::create_mlflow_tracking_server::CreateMlflowTrackingServerError,
        Self,
    > {
        crate::client::customize::CustomizableOperation::new(self)
    }
    pub(crate) fn config_override(mut self, config_override: impl ::std::convert::Into<crate::config::Builder>) -> Self {
        self.set_config_override(::std::option::Option::Some(config_override.into()));
        self
    }

    pub(crate) fn set_config_override(&mut self, config_override: ::std::option::Option<crate::config::Builder>) -> &mut Self {
        self.config_override = config_override;
        self
    }
    /// <p>A unique string identifying the tracking server name. This string is part of the tracking server ARN.</p>
    pub fn tracking_server_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.tracking_server_name(input.into());
        self
    }
    /// <p>A unique string identifying the tracking server name. This string is part of the tracking server ARN.</p>
    pub fn set_tracking_server_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_tracking_server_name(input);
        self
    }
    /// <p>A unique string identifying the tracking server name. This string is part of the tracking server ARN.</p>
    pub fn get_tracking_server_name(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_tracking_server_name()
    }
    /// <p>The S3 URI for a general purpose bucket to use as the MLflow Tracking Server artifact store.</p>
    pub fn artifact_store_uri(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.artifact_store_uri(input.into());
        self
    }
    /// <p>The S3 URI for a general purpose bucket to use as the MLflow Tracking Server artifact store.</p>
    pub fn set_artifact_store_uri(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_artifact_store_uri(input);
        self
    }
    /// <p>The S3 URI for a general purpose bucket to use as the MLflow Tracking Server artifact store.</p>
    pub fn get_artifact_store_uri(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_artifact_store_uri()
    }
    /// <p>The size of the tracking server you want to create. You can choose between <code>"Small"</code>, <code>"Medium"</code>, and <code>"Large"</code>. The default MLflow Tracking Server configuration size is <code>"Small"</code>. You can choose a size depending on the projected use of the tracking server such as the volume of data logged, number of users, and frequency of use.</p>
    /// <p>We recommend using a small tracking server for teams of up to 25 users, a medium tracking server for teams of up to 50 users, and a large tracking server for teams of up to 100 users.</p>
    pub fn tracking_server_size(mut self, input: crate::types::TrackingServerSize) -> Self {
        self.inner = self.inner.tracking_server_size(input);
        self
    }
    /// <p>The size of the tracking server you want to create. You can choose between <code>"Small"</code>, <code>"Medium"</code>, and <code>"Large"</code>. The default MLflow Tracking Server configuration size is <code>"Small"</code>. You can choose a size depending on the projected use of the tracking server such as the volume of data logged, number of users, and frequency of use.</p>
    /// <p>We recommend using a small tracking server for teams of up to 25 users, a medium tracking server for teams of up to 50 users, and a large tracking server for teams of up to 100 users.</p>
    pub fn set_tracking_server_size(mut self, input: ::std::option::Option<crate::types::TrackingServerSize>) -> Self {
        self.inner = self.inner.set_tracking_server_size(input);
        self
    }
    /// <p>The size of the tracking server you want to create. You can choose between <code>"Small"</code>, <code>"Medium"</code>, and <code>"Large"</code>. The default MLflow Tracking Server configuration size is <code>"Small"</code>. You can choose a size depending on the projected use of the tracking server such as the volume of data logged, number of users, and frequency of use.</p>
    /// <p>We recommend using a small tracking server for teams of up to 25 users, a medium tracking server for teams of up to 50 users, and a large tracking server for teams of up to 100 users.</p>
    pub fn get_tracking_server_size(&self) -> &::std::option::Option<crate::types::TrackingServerSize> {
        self.inner.get_tracking_server_size()
    }
    /// <p>The version of MLflow that the tracking server uses. To see which MLflow versions are available to use, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/mlflow.html#mlflow-create-tracking-server-how-it-works">How it works</a>.</p>
    pub fn mlflow_version(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.mlflow_version(input.into());
        self
    }
    /// <p>The version of MLflow that the tracking server uses. To see which MLflow versions are available to use, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/mlflow.html#mlflow-create-tracking-server-how-it-works">How it works</a>.</p>
    pub fn set_mlflow_version(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_mlflow_version(input);
        self
    }
    /// <p>The version of MLflow that the tracking server uses. To see which MLflow versions are available to use, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/mlflow.html#mlflow-create-tracking-server-how-it-works">How it works</a>.</p>
    pub fn get_mlflow_version(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_mlflow_version()
    }
    /// <p>The Amazon Resource Name (ARN) for an IAM role in your account that the MLflow Tracking Server uses to access the artifact store in Amazon S3. The role should have <code>AmazonS3FullAccess</code> permissions. For more information on IAM permissions for tracking server creation, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/mlflow-create-tracking-server-iam.html">Set up IAM permissions for MLflow</a>.</p>
    pub fn role_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.role_arn(input.into());
        self
    }
    /// <p>The Amazon Resource Name (ARN) for an IAM role in your account that the MLflow Tracking Server uses to access the artifact store in Amazon S3. The role should have <code>AmazonS3FullAccess</code> permissions. For more information on IAM permissions for tracking server creation, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/mlflow-create-tracking-server-iam.html">Set up IAM permissions for MLflow</a>.</p>
    pub fn set_role_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_role_arn(input);
        self
    }
    /// <p>The Amazon Resource Name (ARN) for an IAM role in your account that the MLflow Tracking Server uses to access the artifact store in Amazon S3. The role should have <code>AmazonS3FullAccess</code> permissions. For more information on IAM permissions for tracking server creation, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/mlflow-create-tracking-server-iam.html">Set up IAM permissions for MLflow</a>.</p>
    pub fn get_role_arn(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_role_arn()
    }
    /// <p>Whether to enable or disable automatic registration of new MLflow models to the SageMaker Model Registry. To enable automatic model registration, set this value to <code>True</code>. To disable automatic model registration, set this value to <code>False</code>. If not specified, <code>AutomaticModelRegistration</code> defaults to <code>False</code>.</p>
    pub fn automatic_model_registration(mut self, input: bool) -> Self {
        self.inner = self.inner.automatic_model_registration(input);
        self
    }
    /// <p>Whether to enable or disable automatic registration of new MLflow models to the SageMaker Model Registry. To enable automatic model registration, set this value to <code>True</code>. To disable automatic model registration, set this value to <code>False</code>. If not specified, <code>AutomaticModelRegistration</code> defaults to <code>False</code>.</p>
    pub fn set_automatic_model_registration(mut self, input: ::std::option::Option<bool>) -> Self {
        self.inner = self.inner.set_automatic_model_registration(input);
        self
    }
    /// <p>Whether to enable or disable automatic registration of new MLflow models to the SageMaker Model Registry. To enable automatic model registration, set this value to <code>True</code>. To disable automatic model registration, set this value to <code>False</code>. If not specified, <code>AutomaticModelRegistration</code> defaults to <code>False</code>.</p>
    pub fn get_automatic_model_registration(&self) -> &::std::option::Option<bool> {
        self.inner.get_automatic_model_registration()
    }
    /// <p>The day and time of the week in Coordinated Universal Time (UTC) 24-hour standard time that weekly maintenance updates are scheduled. For example: TUE:03:30.</p>
    pub fn weekly_maintenance_window_start(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.weekly_maintenance_window_start(input.into());
        self
    }
    /// <p>The day and time of the week in Coordinated Universal Time (UTC) 24-hour standard time that weekly maintenance updates are scheduled. For example: TUE:03:30.</p>
    pub fn set_weekly_maintenance_window_start(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_weekly_maintenance_window_start(input);
        self
    }
    /// <p>The day and time of the week in Coordinated Universal Time (UTC) 24-hour standard time that weekly maintenance updates are scheduled. For example: TUE:03:30.</p>
    pub fn get_weekly_maintenance_window_start(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_weekly_maintenance_window_start()
    }
    ///
    /// Appends an item to `Tags`.
    ///
    /// To override the contents of this collection use [`set_tags`](Self::set_tags).
    ///
    /// <p>Tags consisting of key-value pairs used to manage metadata for the tracking server.</p>
    pub fn tags(mut self, input: crate::types::Tag) -> Self {
        self.inner = self.inner.tags(input);
        self
    }
    /// <p>Tags consisting of key-value pairs used to manage metadata for the tracking server.</p>
    pub fn set_tags(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>) -> Self {
        self.inner = self.inner.set_tags(input);
        self
    }
    /// <p>Tags consisting of key-value pairs used to manage metadata for the tracking server.</p>
    pub fn get_tags(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Tag>> {
        self.inner.get_tags()
    }
}