1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use crate::operation::create_algorithm::_create_algorithm_output::CreateAlgorithmOutputBuilder;
pub use crate::operation::create_algorithm::_create_algorithm_input::CreateAlgorithmInputBuilder;
impl crate::operation::create_algorithm::builders::CreateAlgorithmInputBuilder {
/// Sends a request with this input using the given client.
pub async fn send_with(
self,
client: &crate::Client,
) -> ::std::result::Result<
crate::operation::create_algorithm::CreateAlgorithmOutput,
::aws_smithy_runtime_api::client::result::SdkError<
crate::operation::create_algorithm::CreateAlgorithmError,
::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
>,
> {
let mut fluent_builder = client.create_algorithm();
fluent_builder.inner = self;
fluent_builder.send().await
}
}
/// Fluent builder constructing a request to `CreateAlgorithm`.
///
/// <p>Create a machine learning algorithm that you can use in SageMaker and list in the Amazon Web Services Marketplace.</p>
#[derive(::std::clone::Clone, ::std::fmt::Debug)]
pub struct CreateAlgorithmFluentBuilder {
handle: ::std::sync::Arc<crate::client::Handle>,
inner: crate::operation::create_algorithm::builders::CreateAlgorithmInputBuilder,
config_override: ::std::option::Option<crate::config::Builder>,
}
impl
crate::client::customize::internal::CustomizableSend<
crate::operation::create_algorithm::CreateAlgorithmOutput,
crate::operation::create_algorithm::CreateAlgorithmError,
> for CreateAlgorithmFluentBuilder
{
fn send(
self,
config_override: crate::config::Builder,
) -> crate::client::customize::internal::BoxFuture<
crate::client::customize::internal::SendResult<
crate::operation::create_algorithm::CreateAlgorithmOutput,
crate::operation::create_algorithm::CreateAlgorithmError,
>,
> {
::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
}
}
impl CreateAlgorithmFluentBuilder {
/// Creates a new `CreateAlgorithmFluentBuilder`.
pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
Self {
handle,
inner: ::std::default::Default::default(),
config_override: ::std::option::Option::None,
}
}
/// Access the CreateAlgorithm as a reference.
pub fn as_input(&self) -> &crate::operation::create_algorithm::builders::CreateAlgorithmInputBuilder {
&self.inner
}
/// Sends the request and returns the response.
///
/// If an error occurs, an `SdkError` will be returned with additional details that
/// can be matched against.
///
/// By default, any retryable failures will be retried twice. Retry behavior
/// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
/// set when configuring the client.
pub async fn send(
self,
) -> ::std::result::Result<
crate::operation::create_algorithm::CreateAlgorithmOutput,
::aws_smithy_runtime_api::client::result::SdkError<
crate::operation::create_algorithm::CreateAlgorithmError,
::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
>,
> {
let input = self
.inner
.build()
.map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
let runtime_plugins = crate::operation::create_algorithm::CreateAlgorithm::operation_runtime_plugins(
self.handle.runtime_plugins.clone(),
&self.handle.conf,
self.config_override,
);
crate::operation::create_algorithm::CreateAlgorithm::orchestrate(&runtime_plugins, input).await
}
/// Consumes this builder, creating a customizable operation that can be modified before being sent.
pub fn customize(
self,
) -> crate::client::customize::CustomizableOperation<
crate::operation::create_algorithm::CreateAlgorithmOutput,
crate::operation::create_algorithm::CreateAlgorithmError,
Self,
> {
crate::client::customize::CustomizableOperation::new(self)
}
pub(crate) fn config_override(mut self, config_override: impl ::std::convert::Into<crate::config::Builder>) -> Self {
self.set_config_override(::std::option::Option::Some(config_override.into()));
self
}
pub(crate) fn set_config_override(&mut self, config_override: ::std::option::Option<crate::config::Builder>) -> &mut Self {
self.config_override = config_override;
self
}
/// <p>The name of the algorithm.</p>
pub fn algorithm_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.algorithm_name(input.into());
self
}
/// <p>The name of the algorithm.</p>
pub fn set_algorithm_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_algorithm_name(input);
self
}
/// <p>The name of the algorithm.</p>
pub fn get_algorithm_name(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_algorithm_name()
}
/// <p>A description of the algorithm.</p>
pub fn algorithm_description(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
self.inner = self.inner.algorithm_description(input.into());
self
}
/// <p>A description of the algorithm.</p>
pub fn set_algorithm_description(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
self.inner = self.inner.set_algorithm_description(input);
self
}
/// <p>A description of the algorithm.</p>
pub fn get_algorithm_description(&self) -> &::std::option::Option<::std::string::String> {
self.inner.get_algorithm_description()
}
/// <p>Specifies details about training jobs run by this algorithm, including the following:</p>
/// <ul>
/// <li>
/// <p>The Amazon ECR path of the container and the version digest of the algorithm.</p></li>
/// <li>
/// <p>The hyperparameters that the algorithm supports.</p></li>
/// <li>
/// <p>The instance types that the algorithm supports for training.</p></li>
/// <li>
/// <p>Whether the algorithm supports distributed training.</p></li>
/// <li>
/// <p>The metrics that the algorithm emits to Amazon CloudWatch.</p></li>
/// <li>
/// <p>Which metrics that the algorithm emits can be used as the objective metric for hyperparameter tuning jobs.</p></li>
/// <li>
/// <p>The input channels that the algorithm supports for training data. For example, an algorithm might support <code>train</code>, <code>validation</code>, and <code>test</code> channels.</p></li>
/// </ul>
pub fn training_specification(mut self, input: crate::types::TrainingSpecification) -> Self {
self.inner = self.inner.training_specification(input);
self
}
/// <p>Specifies details about training jobs run by this algorithm, including the following:</p>
/// <ul>
/// <li>
/// <p>The Amazon ECR path of the container and the version digest of the algorithm.</p></li>
/// <li>
/// <p>The hyperparameters that the algorithm supports.</p></li>
/// <li>
/// <p>The instance types that the algorithm supports for training.</p></li>
/// <li>
/// <p>Whether the algorithm supports distributed training.</p></li>
/// <li>
/// <p>The metrics that the algorithm emits to Amazon CloudWatch.</p></li>
/// <li>
/// <p>Which metrics that the algorithm emits can be used as the objective metric for hyperparameter tuning jobs.</p></li>
/// <li>
/// <p>The input channels that the algorithm supports for training data. For example, an algorithm might support <code>train</code>, <code>validation</code>, and <code>test</code> channels.</p></li>
/// </ul>
pub fn set_training_specification(mut self, input: ::std::option::Option<crate::types::TrainingSpecification>) -> Self {
self.inner = self.inner.set_training_specification(input);
self
}
/// <p>Specifies details about training jobs run by this algorithm, including the following:</p>
/// <ul>
/// <li>
/// <p>The Amazon ECR path of the container and the version digest of the algorithm.</p></li>
/// <li>
/// <p>The hyperparameters that the algorithm supports.</p></li>
/// <li>
/// <p>The instance types that the algorithm supports for training.</p></li>
/// <li>
/// <p>Whether the algorithm supports distributed training.</p></li>
/// <li>
/// <p>The metrics that the algorithm emits to Amazon CloudWatch.</p></li>
/// <li>
/// <p>Which metrics that the algorithm emits can be used as the objective metric for hyperparameter tuning jobs.</p></li>
/// <li>
/// <p>The input channels that the algorithm supports for training data. For example, an algorithm might support <code>train</code>, <code>validation</code>, and <code>test</code> channels.</p></li>
/// </ul>
pub fn get_training_specification(&self) -> &::std::option::Option<crate::types::TrainingSpecification> {
self.inner.get_training_specification()
}
/// <p>Specifies details about inference jobs that the algorithm runs, including the following:</p>
/// <ul>
/// <li>
/// <p>The Amazon ECR paths of containers that contain the inference code and model artifacts.</p></li>
/// <li>
/// <p>The instance types that the algorithm supports for transform jobs and real-time endpoints used for inference.</p></li>
/// <li>
/// <p>The input and output content formats that the algorithm supports for inference.</p></li>
/// </ul>
pub fn inference_specification(mut self, input: crate::types::InferenceSpecification) -> Self {
self.inner = self.inner.inference_specification(input);
self
}
/// <p>Specifies details about inference jobs that the algorithm runs, including the following:</p>
/// <ul>
/// <li>
/// <p>The Amazon ECR paths of containers that contain the inference code and model artifacts.</p></li>
/// <li>
/// <p>The instance types that the algorithm supports for transform jobs and real-time endpoints used for inference.</p></li>
/// <li>
/// <p>The input and output content formats that the algorithm supports for inference.</p></li>
/// </ul>
pub fn set_inference_specification(mut self, input: ::std::option::Option<crate::types::InferenceSpecification>) -> Self {
self.inner = self.inner.set_inference_specification(input);
self
}
/// <p>Specifies details about inference jobs that the algorithm runs, including the following:</p>
/// <ul>
/// <li>
/// <p>The Amazon ECR paths of containers that contain the inference code and model artifacts.</p></li>
/// <li>
/// <p>The instance types that the algorithm supports for transform jobs and real-time endpoints used for inference.</p></li>
/// <li>
/// <p>The input and output content formats that the algorithm supports for inference.</p></li>
/// </ul>
pub fn get_inference_specification(&self) -> &::std::option::Option<crate::types::InferenceSpecification> {
self.inner.get_inference_specification()
}
/// <p>Specifies configurations for one or more training jobs and that SageMaker runs to test the algorithm's training code and, optionally, one or more batch transform jobs that SageMaker runs to test the algorithm's inference code.</p>
pub fn validation_specification(mut self, input: crate::types::AlgorithmValidationSpecification) -> Self {
self.inner = self.inner.validation_specification(input);
self
}
/// <p>Specifies configurations for one or more training jobs and that SageMaker runs to test the algorithm's training code and, optionally, one or more batch transform jobs that SageMaker runs to test the algorithm's inference code.</p>
pub fn set_validation_specification(mut self, input: ::std::option::Option<crate::types::AlgorithmValidationSpecification>) -> Self {
self.inner = self.inner.set_validation_specification(input);
self
}
/// <p>Specifies configurations for one or more training jobs and that SageMaker runs to test the algorithm's training code and, optionally, one or more batch transform jobs that SageMaker runs to test the algorithm's inference code.</p>
pub fn get_validation_specification(&self) -> &::std::option::Option<crate::types::AlgorithmValidationSpecification> {
self.inner.get_validation_specification()
}
/// <p>Whether to certify the algorithm so that it can be listed in Amazon Web Services Marketplace.</p>
pub fn certify_for_marketplace(mut self, input: bool) -> Self {
self.inner = self.inner.certify_for_marketplace(input);
self
}
/// <p>Whether to certify the algorithm so that it can be listed in Amazon Web Services Marketplace.</p>
pub fn set_certify_for_marketplace(mut self, input: ::std::option::Option<bool>) -> Self {
self.inner = self.inner.set_certify_for_marketplace(input);
self
}
/// <p>Whether to certify the algorithm so that it can be listed in Amazon Web Services Marketplace.</p>
pub fn get_certify_for_marketplace(&self) -> &::std::option::Option<bool> {
self.inner.get_certify_for_marketplace()
}
///
/// Appends an item to `Tags`.
///
/// To override the contents of this collection use [`set_tags`](Self::set_tags).
///
/// <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services Resources</a>.</p>
pub fn tags(mut self, input: crate::types::Tag) -> Self {
self.inner = self.inner.tags(input);
self
}
/// <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services Resources</a>.</p>
pub fn set_tags(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>) -> Self {
self.inner = self.inner.set_tags(input);
self
}
/// <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services Resources</a>.</p>
pub fn get_tags(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Tag>> {
self.inner.get_tags()
}
}