1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use crate::operation::create_model_package::_create_model_package_output::CreateModelPackageOutputBuilder;

pub use crate::operation::create_model_package::_create_model_package_input::CreateModelPackageInputBuilder;

impl CreateModelPackageInputBuilder {
    /// Sends a request with this input using the given client.
    pub async fn send_with(
        self,
        client: &crate::Client,
    ) -> ::std::result::Result<
        crate::operation::create_model_package::CreateModelPackageOutput,
        ::aws_smithy_runtime_api::client::result::SdkError<
            crate::operation::create_model_package::CreateModelPackageError,
            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
        >,
    > {
        let mut fluent_builder = client.create_model_package();
        fluent_builder.inner = self;
        fluent_builder.send().await
    }
}
/// Fluent builder constructing a request to `CreateModelPackage`.
///
/// <p>Creates a model package that you can use to create SageMaker models or list on Amazon Web Services Marketplace, or a versioned model that is part of a model group. Buyers can subscribe to model packages listed on Amazon Web Services Marketplace to create models in SageMaker.</p>
/// <p>To create a model package by specifying a Docker container that contains your inference code and the Amazon S3 location of your model artifacts, provide values for <code>InferenceSpecification</code>. To create a model from an algorithm resource that you created or subscribed to in Amazon Web Services Marketplace, provide a value for <code>SourceAlgorithmSpecification</code>.</p> <note>
/// <p>There are two types of model packages:</p>
/// <ul>
/// <li> <p>Versioned - a model that is part of a model group in the model registry.</p> </li>
/// <li> <p>Unversioned - a model package that is not part of a model group.</p> </li>
/// </ul>
/// </note>
#[derive(::std::clone::Clone, ::std::fmt::Debug)]
pub struct CreateModelPackageFluentBuilder {
    handle: ::std::sync::Arc<crate::client::Handle>,
    inner: crate::operation::create_model_package::builders::CreateModelPackageInputBuilder,
    config_override: ::std::option::Option<crate::config::Builder>,
}
impl
    crate::client::customize::internal::CustomizableSend<
        crate::operation::create_model_package::CreateModelPackageOutput,
        crate::operation::create_model_package::CreateModelPackageError,
    > for CreateModelPackageFluentBuilder
{
    fn send(
        self,
        config_override: crate::config::Builder,
    ) -> crate::client::customize::internal::BoxFuture<
        crate::client::customize::internal::SendResult<
            crate::operation::create_model_package::CreateModelPackageOutput,
            crate::operation::create_model_package::CreateModelPackageError,
        >,
    > {
        ::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
    }
}
impl CreateModelPackageFluentBuilder {
    /// Creates a new `CreateModelPackage`.
    pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
        Self {
            handle,
            inner: ::std::default::Default::default(),
            config_override: ::std::option::Option::None,
        }
    }
    /// Access the CreateModelPackage as a reference.
    pub fn as_input(&self) -> &crate::operation::create_model_package::builders::CreateModelPackageInputBuilder {
        &self.inner
    }
    /// Sends the request and returns the response.
    ///
    /// If an error occurs, an `SdkError` will be returned with additional details that
    /// can be matched against.
    ///
    /// By default, any retryable failures will be retried twice. Retry behavior
    /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
    /// set when configuring the client.
    pub async fn send(
        self,
    ) -> ::std::result::Result<
        crate::operation::create_model_package::CreateModelPackageOutput,
        ::aws_smithy_runtime_api::client::result::SdkError<
            crate::operation::create_model_package::CreateModelPackageError,
            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
        >,
    > {
        let input = self
            .inner
            .build()
            .map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
        let runtime_plugins = crate::operation::create_model_package::CreateModelPackage::operation_runtime_plugins(
            self.handle.runtime_plugins.clone(),
            &self.handle.conf,
            self.config_override,
        );
        crate::operation::create_model_package::CreateModelPackage::orchestrate(&runtime_plugins, input).await
    }

    /// Consumes this builder, creating a customizable operation that can be modified before being sent.
    pub fn customize(
        self,
    ) -> crate::client::customize::CustomizableOperation<
        crate::operation::create_model_package::CreateModelPackageOutput,
        crate::operation::create_model_package::CreateModelPackageError,
        Self,
    > {
        crate::client::customize::CustomizableOperation::new(self)
    }
    pub(crate) fn config_override(mut self, config_override: impl Into<crate::config::Builder>) -> Self {
        self.set_config_override(Some(config_override.into()));
        self
    }

    pub(crate) fn set_config_override(&mut self, config_override: Option<crate::config::Builder>) -> &mut Self {
        self.config_override = config_override;
        self
    }
    /// <p>The name of the model package. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).</p>
    /// <p>This parameter is required for unversioned models. It is not applicable to versioned models.</p>
    pub fn model_package_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.model_package_name(input.into());
        self
    }
    /// <p>The name of the model package. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).</p>
    /// <p>This parameter is required for unversioned models. It is not applicable to versioned models.</p>
    pub fn set_model_package_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_model_package_name(input);
        self
    }
    /// <p>The name of the model package. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).</p>
    /// <p>This parameter is required for unversioned models. It is not applicable to versioned models.</p>
    pub fn get_model_package_name(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_model_package_name()
    }
    /// <p>The name or Amazon Resource Name (ARN) of the model package group that this model version belongs to.</p>
    /// <p>This parameter is required for versioned models, and does not apply to unversioned models.</p>
    pub fn model_package_group_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.model_package_group_name(input.into());
        self
    }
    /// <p>The name or Amazon Resource Name (ARN) of the model package group that this model version belongs to.</p>
    /// <p>This parameter is required for versioned models, and does not apply to unversioned models.</p>
    pub fn set_model_package_group_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_model_package_group_name(input);
        self
    }
    /// <p>The name or Amazon Resource Name (ARN) of the model package group that this model version belongs to.</p>
    /// <p>This parameter is required for versioned models, and does not apply to unversioned models.</p>
    pub fn get_model_package_group_name(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_model_package_group_name()
    }
    /// <p>A description of the model package.</p>
    pub fn model_package_description(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.model_package_description(input.into());
        self
    }
    /// <p>A description of the model package.</p>
    pub fn set_model_package_description(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_model_package_description(input);
        self
    }
    /// <p>A description of the model package.</p>
    pub fn get_model_package_description(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_model_package_description()
    }
    /// <p>Specifies details about inference jobs that can be run with models based on this model package, including the following:</p>
    /// <ul>
    /// <li> <p>The Amazon ECR paths of containers that contain the inference code and model artifacts.</p> </li>
    /// <li> <p>The instance types that the model package supports for transform jobs and real-time endpoints used for inference.</p> </li>
    /// <li> <p>The input and output content formats that the model package supports for inference.</p> </li>
    /// </ul>
    pub fn inference_specification(mut self, input: crate::types::InferenceSpecification) -> Self {
        self.inner = self.inner.inference_specification(input);
        self
    }
    /// <p>Specifies details about inference jobs that can be run with models based on this model package, including the following:</p>
    /// <ul>
    /// <li> <p>The Amazon ECR paths of containers that contain the inference code and model artifacts.</p> </li>
    /// <li> <p>The instance types that the model package supports for transform jobs and real-time endpoints used for inference.</p> </li>
    /// <li> <p>The input and output content formats that the model package supports for inference.</p> </li>
    /// </ul>
    pub fn set_inference_specification(mut self, input: ::std::option::Option<crate::types::InferenceSpecification>) -> Self {
        self.inner = self.inner.set_inference_specification(input);
        self
    }
    /// <p>Specifies details about inference jobs that can be run with models based on this model package, including the following:</p>
    /// <ul>
    /// <li> <p>The Amazon ECR paths of containers that contain the inference code and model artifacts.</p> </li>
    /// <li> <p>The instance types that the model package supports for transform jobs and real-time endpoints used for inference.</p> </li>
    /// <li> <p>The input and output content formats that the model package supports for inference.</p> </li>
    /// </ul>
    pub fn get_inference_specification(&self) -> &::std::option::Option<crate::types::InferenceSpecification> {
        self.inner.get_inference_specification()
    }
    /// <p>Specifies configurations for one or more transform jobs that SageMaker runs to test the model package.</p>
    pub fn validation_specification(mut self, input: crate::types::ModelPackageValidationSpecification) -> Self {
        self.inner = self.inner.validation_specification(input);
        self
    }
    /// <p>Specifies configurations for one or more transform jobs that SageMaker runs to test the model package.</p>
    pub fn set_validation_specification(mut self, input: ::std::option::Option<crate::types::ModelPackageValidationSpecification>) -> Self {
        self.inner = self.inner.set_validation_specification(input);
        self
    }
    /// <p>Specifies configurations for one or more transform jobs that SageMaker runs to test the model package.</p>
    pub fn get_validation_specification(&self) -> &::std::option::Option<crate::types::ModelPackageValidationSpecification> {
        self.inner.get_validation_specification()
    }
    /// <p>Details about the algorithm that was used to create the model package.</p>
    pub fn source_algorithm_specification(mut self, input: crate::types::SourceAlgorithmSpecification) -> Self {
        self.inner = self.inner.source_algorithm_specification(input);
        self
    }
    /// <p>Details about the algorithm that was used to create the model package.</p>
    pub fn set_source_algorithm_specification(mut self, input: ::std::option::Option<crate::types::SourceAlgorithmSpecification>) -> Self {
        self.inner = self.inner.set_source_algorithm_specification(input);
        self
    }
    /// <p>Details about the algorithm that was used to create the model package.</p>
    pub fn get_source_algorithm_specification(&self) -> &::std::option::Option<crate::types::SourceAlgorithmSpecification> {
        self.inner.get_source_algorithm_specification()
    }
    /// <p>Whether to certify the model package for listing on Amazon Web Services Marketplace.</p>
    /// <p>This parameter is optional for unversioned models, and does not apply to versioned models.</p>
    pub fn certify_for_marketplace(mut self, input: bool) -> Self {
        self.inner = self.inner.certify_for_marketplace(input);
        self
    }
    /// <p>Whether to certify the model package for listing on Amazon Web Services Marketplace.</p>
    /// <p>This parameter is optional for unversioned models, and does not apply to versioned models.</p>
    pub fn set_certify_for_marketplace(mut self, input: ::std::option::Option<bool>) -> Self {
        self.inner = self.inner.set_certify_for_marketplace(input);
        self
    }
    /// <p>Whether to certify the model package for listing on Amazon Web Services Marketplace.</p>
    /// <p>This parameter is optional for unversioned models, and does not apply to versioned models.</p>
    pub fn get_certify_for_marketplace(&self) -> &::std::option::Option<bool> {
        self.inner.get_certify_for_marketplace()
    }
    /// Appends an item to `Tags`.
    ///
    /// To override the contents of this collection use [`set_tags`](Self::set_tags).
    ///
    /// <p>A list of key value pairs associated with the model. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services resources</a> in the <i>Amazon Web Services General Reference Guide</i>.</p>
    /// <p>If you supply <code>ModelPackageGroupName</code>, your model package belongs to the model group you specify and uses the tags associated with the model group. In this case, you cannot supply a <code>tag</code> argument. </p>
    pub fn tags(mut self, input: crate::types::Tag) -> Self {
        self.inner = self.inner.tags(input);
        self
    }
    /// <p>A list of key value pairs associated with the model. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services resources</a> in the <i>Amazon Web Services General Reference Guide</i>.</p>
    /// <p>If you supply <code>ModelPackageGroupName</code>, your model package belongs to the model group you specify and uses the tags associated with the model group. In this case, you cannot supply a <code>tag</code> argument. </p>
    pub fn set_tags(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>) -> Self {
        self.inner = self.inner.set_tags(input);
        self
    }
    /// <p>A list of key value pairs associated with the model. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services resources</a> in the <i>Amazon Web Services General Reference Guide</i>.</p>
    /// <p>If you supply <code>ModelPackageGroupName</code>, your model package belongs to the model group you specify and uses the tags associated with the model group. In this case, you cannot supply a <code>tag</code> argument. </p>
    pub fn get_tags(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Tag>> {
        self.inner.get_tags()
    }
    /// <p>Whether the model is approved for deployment.</p>
    /// <p>This parameter is optional for versioned models, and does not apply to unversioned models.</p>
    /// <p>For versioned models, the value of this parameter must be set to <code>Approved</code> to deploy the model.</p>
    pub fn model_approval_status(mut self, input: crate::types::ModelApprovalStatus) -> Self {
        self.inner = self.inner.model_approval_status(input);
        self
    }
    /// <p>Whether the model is approved for deployment.</p>
    /// <p>This parameter is optional for versioned models, and does not apply to unversioned models.</p>
    /// <p>For versioned models, the value of this parameter must be set to <code>Approved</code> to deploy the model.</p>
    pub fn set_model_approval_status(mut self, input: ::std::option::Option<crate::types::ModelApprovalStatus>) -> Self {
        self.inner = self.inner.set_model_approval_status(input);
        self
    }
    /// <p>Whether the model is approved for deployment.</p>
    /// <p>This parameter is optional for versioned models, and does not apply to unversioned models.</p>
    /// <p>For versioned models, the value of this parameter must be set to <code>Approved</code> to deploy the model.</p>
    pub fn get_model_approval_status(&self) -> &::std::option::Option<crate::types::ModelApprovalStatus> {
        self.inner.get_model_approval_status()
    }
    /// <p>Metadata properties of the tracking entity, trial, or trial component.</p>
    pub fn metadata_properties(mut self, input: crate::types::MetadataProperties) -> Self {
        self.inner = self.inner.metadata_properties(input);
        self
    }
    /// <p>Metadata properties of the tracking entity, trial, or trial component.</p>
    pub fn set_metadata_properties(mut self, input: ::std::option::Option<crate::types::MetadataProperties>) -> Self {
        self.inner = self.inner.set_metadata_properties(input);
        self
    }
    /// <p>Metadata properties of the tracking entity, trial, or trial component.</p>
    pub fn get_metadata_properties(&self) -> &::std::option::Option<crate::types::MetadataProperties> {
        self.inner.get_metadata_properties()
    }
    /// <p>A structure that contains model metrics reports.</p>
    pub fn model_metrics(mut self, input: crate::types::ModelMetrics) -> Self {
        self.inner = self.inner.model_metrics(input);
        self
    }
    /// <p>A structure that contains model metrics reports.</p>
    pub fn set_model_metrics(mut self, input: ::std::option::Option<crate::types::ModelMetrics>) -> Self {
        self.inner = self.inner.set_model_metrics(input);
        self
    }
    /// <p>A structure that contains model metrics reports.</p>
    pub fn get_model_metrics(&self) -> &::std::option::Option<crate::types::ModelMetrics> {
        self.inner.get_model_metrics()
    }
    /// <p>A unique token that guarantees that the call to this API is idempotent.</p>
    pub fn client_token(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.client_token(input.into());
        self
    }
    /// <p>A unique token that guarantees that the call to this API is idempotent.</p>
    pub fn set_client_token(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_client_token(input);
        self
    }
    /// <p>A unique token that guarantees that the call to this API is idempotent.</p>
    pub fn get_client_token(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_client_token()
    }
    /// Adds a key-value pair to `CustomerMetadataProperties`.
    ///
    /// To override the contents of this collection use [`set_customer_metadata_properties`](Self::set_customer_metadata_properties).
    ///
    /// <p>The metadata properties associated with the model package versions.</p>
    pub fn customer_metadata_properties(
        mut self,
        k: impl ::std::convert::Into<::std::string::String>,
        v: impl ::std::convert::Into<::std::string::String>,
    ) -> Self {
        self.inner = self.inner.customer_metadata_properties(k.into(), v.into());
        self
    }
    /// <p>The metadata properties associated with the model package versions.</p>
    pub fn set_customer_metadata_properties(
        mut self,
        input: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>,
    ) -> Self {
        self.inner = self.inner.set_customer_metadata_properties(input);
        self
    }
    /// <p>The metadata properties associated with the model package versions.</p>
    pub fn get_customer_metadata_properties(
        &self,
    ) -> &::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>> {
        self.inner.get_customer_metadata_properties()
    }
    /// <p>Represents the drift check baselines that can be used when the model monitor is set using the model package. For more information, see the topic on <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines-quality-clarify-baseline-lifecycle.html#pipelines-quality-clarify-baseline-drift-detection">Drift Detection against Previous Baselines in SageMaker Pipelines</a> in the <i>Amazon SageMaker Developer Guide</i>. </p>
    pub fn drift_check_baselines(mut self, input: crate::types::DriftCheckBaselines) -> Self {
        self.inner = self.inner.drift_check_baselines(input);
        self
    }
    /// <p>Represents the drift check baselines that can be used when the model monitor is set using the model package. For more information, see the topic on <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines-quality-clarify-baseline-lifecycle.html#pipelines-quality-clarify-baseline-drift-detection">Drift Detection against Previous Baselines in SageMaker Pipelines</a> in the <i>Amazon SageMaker Developer Guide</i>. </p>
    pub fn set_drift_check_baselines(mut self, input: ::std::option::Option<crate::types::DriftCheckBaselines>) -> Self {
        self.inner = self.inner.set_drift_check_baselines(input);
        self
    }
    /// <p>Represents the drift check baselines that can be used when the model monitor is set using the model package. For more information, see the topic on <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines-quality-clarify-baseline-lifecycle.html#pipelines-quality-clarify-baseline-drift-detection">Drift Detection against Previous Baselines in SageMaker Pipelines</a> in the <i>Amazon SageMaker Developer Guide</i>. </p>
    pub fn get_drift_check_baselines(&self) -> &::std::option::Option<crate::types::DriftCheckBaselines> {
        self.inner.get_drift_check_baselines()
    }
    /// <p>The machine learning domain of your model package and its components. Common machine learning domains include computer vision and natural language processing.</p>
    pub fn domain(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.domain(input.into());
        self
    }
    /// <p>The machine learning domain of your model package and its components. Common machine learning domains include computer vision and natural language processing.</p>
    pub fn set_domain(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_domain(input);
        self
    }
    /// <p>The machine learning domain of your model package and its components. Common machine learning domains include computer vision and natural language processing.</p>
    pub fn get_domain(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_domain()
    }
    /// <p>The machine learning task your model package accomplishes. Common machine learning tasks include object detection and image classification. The following tasks are supported by Inference Recommender: <code>"IMAGE_CLASSIFICATION"</code> | <code>"OBJECT_DETECTION"</code> | <code>"TEXT_GENERATION"</code> |<code>"IMAGE_SEGMENTATION"</code> | <code>"FILL_MASK"</code> | <code>"CLASSIFICATION"</code> | <code>"REGRESSION"</code> | <code>"OTHER"</code>.</p>
    /// <p>Specify "OTHER" if none of the tasks listed fit your use case.</p>
    pub fn task(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.task(input.into());
        self
    }
    /// <p>The machine learning task your model package accomplishes. Common machine learning tasks include object detection and image classification. The following tasks are supported by Inference Recommender: <code>"IMAGE_CLASSIFICATION"</code> | <code>"OBJECT_DETECTION"</code> | <code>"TEXT_GENERATION"</code> |<code>"IMAGE_SEGMENTATION"</code> | <code>"FILL_MASK"</code> | <code>"CLASSIFICATION"</code> | <code>"REGRESSION"</code> | <code>"OTHER"</code>.</p>
    /// <p>Specify "OTHER" if none of the tasks listed fit your use case.</p>
    pub fn set_task(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_task(input);
        self
    }
    /// <p>The machine learning task your model package accomplishes. Common machine learning tasks include object detection and image classification. The following tasks are supported by Inference Recommender: <code>"IMAGE_CLASSIFICATION"</code> | <code>"OBJECT_DETECTION"</code> | <code>"TEXT_GENERATION"</code> |<code>"IMAGE_SEGMENTATION"</code> | <code>"FILL_MASK"</code> | <code>"CLASSIFICATION"</code> | <code>"REGRESSION"</code> | <code>"OTHER"</code>.</p>
    /// <p>Specify "OTHER" if none of the tasks listed fit your use case.</p>
    pub fn get_task(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_task()
    }
    /// <p>The Amazon Simple Storage Service (Amazon S3) path where the sample payload is stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). This archive can hold multiple files that are all equally used in the load test. Each file in the archive must satisfy the size constraints of the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html#API_runtime_InvokeEndpoint_RequestSyntax">InvokeEndpoint</a> call.</p>
    pub fn sample_payload_url(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.sample_payload_url(input.into());
        self
    }
    /// <p>The Amazon Simple Storage Service (Amazon S3) path where the sample payload is stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). This archive can hold multiple files that are all equally used in the load test. Each file in the archive must satisfy the size constraints of the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html#API_runtime_InvokeEndpoint_RequestSyntax">InvokeEndpoint</a> call.</p>
    pub fn set_sample_payload_url(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_sample_payload_url(input);
        self
    }
    /// <p>The Amazon Simple Storage Service (Amazon S3) path where the sample payload is stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). This archive can hold multiple files that are all equally used in the load test. Each file in the archive must satisfy the size constraints of the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html#API_runtime_InvokeEndpoint_RequestSyntax">InvokeEndpoint</a> call.</p>
    pub fn get_sample_payload_url(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_sample_payload_url()
    }
    /// Appends an item to `AdditionalInferenceSpecifications`.
    ///
    /// To override the contents of this collection use [`set_additional_inference_specifications`](Self::set_additional_inference_specifications).
    ///
    /// <p>An array of additional Inference Specification objects. Each additional Inference Specification specifies artifacts based on this model package that can be used on inference endpoints. Generally used with SageMaker Neo to store the compiled artifacts. </p>
    pub fn additional_inference_specifications(mut self, input: crate::types::AdditionalInferenceSpecificationDefinition) -> Self {
        self.inner = self.inner.additional_inference_specifications(input);
        self
    }
    /// <p>An array of additional Inference Specification objects. Each additional Inference Specification specifies artifacts based on this model package that can be used on inference endpoints. Generally used with SageMaker Neo to store the compiled artifacts. </p>
    pub fn set_additional_inference_specifications(
        mut self,
        input: ::std::option::Option<::std::vec::Vec<crate::types::AdditionalInferenceSpecificationDefinition>>,
    ) -> Self {
        self.inner = self.inner.set_additional_inference_specifications(input);
        self
    }
    /// <p>An array of additional Inference Specification objects. Each additional Inference Specification specifies artifacts based on this model package that can be used on inference endpoints. Generally used with SageMaker Neo to store the compiled artifacts. </p>
    pub fn get_additional_inference_specifications(
        &self,
    ) -> &::std::option::Option<::std::vec::Vec<crate::types::AdditionalInferenceSpecificationDefinition>> {
        self.inner.get_additional_inference_specifications()
    }
    /// <p>Indicates if you want to skip model validation.</p>
    pub fn skip_model_validation(mut self, input: crate::types::SkipModelValidation) -> Self {
        self.inner = self.inner.skip_model_validation(input);
        self
    }
    /// <p>Indicates if you want to skip model validation.</p>
    pub fn set_skip_model_validation(mut self, input: ::std::option::Option<crate::types::SkipModelValidation>) -> Self {
        self.inner = self.inner.set_skip_model_validation(input);
        self
    }
    /// <p>Indicates if you want to skip model validation.</p>
    pub fn get_skip_model_validation(&self) -> &::std::option::Option<crate::types::SkipModelValidation> {
        self.inner.get_skip_model_validation()
    }
}