aws_sdk_sagemaker/operation/create_training_job/builders.rs
1// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
2pub use crate::operation::create_training_job::_create_training_job_output::CreateTrainingJobOutputBuilder;
3
4pub use crate::operation::create_training_job::_create_training_job_input::CreateTrainingJobInputBuilder;
5
6impl crate::operation::create_training_job::builders::CreateTrainingJobInputBuilder {
7 /// Sends a request with this input using the given client.
8 pub async fn send_with(
9 self,
10 client: &crate::Client,
11 ) -> ::std::result::Result<
12 crate::operation::create_training_job::CreateTrainingJobOutput,
13 ::aws_smithy_runtime_api::client::result::SdkError<
14 crate::operation::create_training_job::CreateTrainingJobError,
15 ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
16 >,
17 > {
18 let mut fluent_builder = client.create_training_job();
19 fluent_builder.inner = self;
20 fluent_builder.send().await
21 }
22}
23/// Fluent builder constructing a request to `CreateTrainingJob`.
24///
25/// <p>Starts a model training job. After training completes, SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify.</p>
26/// <p>If you choose to host your model using SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than SageMaker, provided that you know how to use them for inference.</p>
27/// <p>In the request body, you provide the following:</p>
28/// <ul>
29/// <li>
30/// <p><code>AlgorithmSpecification</code> - Identifies the training algorithm to use.</p></li>
31/// <li>
32/// <p><code>HyperParameters</code> - Specify these algorithm-specific parameters to enable the estimation of model parameters during training. Hyperparameters can be tuned to optimize this learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>.</p><important>
33/// <p>Do not include any security-sensitive information including account access IDs, secrets, or tokens in any hyperparameter fields. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by security-sensitive information included in the request hyperparameter variable or plain text fields.</p>
34/// </important></li>
35/// <li>
36/// <p><code>InputDataConfig</code> - Describes the input required by the training job and the Amazon S3, EFS, or FSx location where it is stored.</p></li>
37/// <li>
38/// <p><code>OutputDataConfig</code> - Identifies the Amazon S3 bucket where you want SageMaker to save the results of model training.</p></li>
39/// <li>
40/// <p><code>ResourceConfig</code> - Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance.</p></li>
41/// <li>
42/// <p><code>EnableManagedSpotTraining</code> - Optimize the cost of training machine learning models by up to 80% by using Amazon EC2 Spot instances. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html">Managed Spot Training</a>.</p></li>
43/// <li>
44/// <p><code>RoleArn</code> - The Amazon Resource Name (ARN) that SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that SageMaker can successfully complete model training.</p></li>
45/// <li>
46/// <p><code>StoppingCondition</code> - To help cap training costs, use <code>MaxRuntimeInSeconds</code> to set a time limit for training. Use <code>MaxWaitTimeInSeconds</code> to specify how long a managed spot training job has to complete.</p></li>
47/// <li>
48/// <p><code>Environment</code> - The environment variables to set in the Docker container.</p><important>
49/// <p>Do not include any security-sensitive information including account access IDs, secrets, or tokens in any environment fields. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by security-sensitive information included in the request environment variable or plain text fields.</p>
50/// </important></li>
51/// <li>
52/// <p><code>RetryStrategy</code> - The number of times to retry the job when the job fails due to an <code>InternalServerError</code>.</p></li>
53/// </ul>
54/// <p>For more information about SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>.</p>
55#[derive(::std::clone::Clone, ::std::fmt::Debug)]
56pub struct CreateTrainingJobFluentBuilder {
57 handle: ::std::sync::Arc<crate::client::Handle>,
58 inner: crate::operation::create_training_job::builders::CreateTrainingJobInputBuilder,
59 config_override: ::std::option::Option<crate::config::Builder>,
60}
61impl
62 crate::client::customize::internal::CustomizableSend<
63 crate::operation::create_training_job::CreateTrainingJobOutput,
64 crate::operation::create_training_job::CreateTrainingJobError,
65 > for CreateTrainingJobFluentBuilder
66{
67 fn send(
68 self,
69 config_override: crate::config::Builder,
70 ) -> crate::client::customize::internal::BoxFuture<
71 crate::client::customize::internal::SendResult<
72 crate::operation::create_training_job::CreateTrainingJobOutput,
73 crate::operation::create_training_job::CreateTrainingJobError,
74 >,
75 > {
76 ::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
77 }
78}
79impl CreateTrainingJobFluentBuilder {
80 /// Creates a new `CreateTrainingJobFluentBuilder`.
81 pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
82 Self {
83 handle,
84 inner: ::std::default::Default::default(),
85 config_override: ::std::option::Option::None,
86 }
87 }
88 /// Access the CreateTrainingJob as a reference.
89 pub fn as_input(&self) -> &crate::operation::create_training_job::builders::CreateTrainingJobInputBuilder {
90 &self.inner
91 }
92 /// Sends the request and returns the response.
93 ///
94 /// If an error occurs, an `SdkError` will be returned with additional details that
95 /// can be matched against.
96 ///
97 /// By default, any retryable failures will be retried twice. Retry behavior
98 /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
99 /// set when configuring the client.
100 pub async fn send(
101 self,
102 ) -> ::std::result::Result<
103 crate::operation::create_training_job::CreateTrainingJobOutput,
104 ::aws_smithy_runtime_api::client::result::SdkError<
105 crate::operation::create_training_job::CreateTrainingJobError,
106 ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
107 >,
108 > {
109 let input = self
110 .inner
111 .build()
112 .map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
113 let runtime_plugins = crate::operation::create_training_job::CreateTrainingJob::operation_runtime_plugins(
114 self.handle.runtime_plugins.clone(),
115 &self.handle.conf,
116 self.config_override,
117 );
118 crate::operation::create_training_job::CreateTrainingJob::orchestrate(&runtime_plugins, input).await
119 }
120
121 /// Consumes this builder, creating a customizable operation that can be modified before being sent.
122 pub fn customize(
123 self,
124 ) -> crate::client::customize::CustomizableOperation<
125 crate::operation::create_training_job::CreateTrainingJobOutput,
126 crate::operation::create_training_job::CreateTrainingJobError,
127 Self,
128 > {
129 crate::client::customize::CustomizableOperation::new(self)
130 }
131 pub(crate) fn config_override(mut self, config_override: impl ::std::convert::Into<crate::config::Builder>) -> Self {
132 self.set_config_override(::std::option::Option::Some(config_override.into()));
133 self
134 }
135
136 pub(crate) fn set_config_override(&mut self, config_override: ::std::option::Option<crate::config::Builder>) -> &mut Self {
137 self.config_override = config_override;
138 self
139 }
140 /// <p>The name of the training job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.</p>
141 pub fn training_job_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
142 self.inner = self.inner.training_job_name(input.into());
143 self
144 }
145 /// <p>The name of the training job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.</p>
146 pub fn set_training_job_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
147 self.inner = self.inner.set_training_job_name(input);
148 self
149 }
150 /// <p>The name of the training job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.</p>
151 pub fn get_training_job_name(&self) -> &::std::option::Option<::std::string::String> {
152 self.inner.get_training_job_name()
153 }
154 ///
155 /// Adds a key-value pair to `HyperParameters`.
156 ///
157 /// To override the contents of this collection use [`set_hyper_parameters`](Self::set_hyper_parameters).
158 ///
159 /// <p>Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>.</p>
160 /// <p>You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value pair. Each key and value is limited to 256 characters, as specified by the <code>Length Constraint</code>.</p><important>
161 /// <p>Do not include any security-sensitive information including account access IDs, secrets, or tokens in any hyperparameter fields. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by any security-sensitive information included in the request hyperparameter variable or plain text fields.</p>
162 /// </important>
163 pub fn hyper_parameters(
164 mut self,
165 k: impl ::std::convert::Into<::std::string::String>,
166 v: impl ::std::convert::Into<::std::string::String>,
167 ) -> Self {
168 self.inner = self.inner.hyper_parameters(k.into(), v.into());
169 self
170 }
171 /// <p>Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>.</p>
172 /// <p>You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value pair. Each key and value is limited to 256 characters, as specified by the <code>Length Constraint</code>.</p><important>
173 /// <p>Do not include any security-sensitive information including account access IDs, secrets, or tokens in any hyperparameter fields. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by any security-sensitive information included in the request hyperparameter variable or plain text fields.</p>
174 /// </important>
175 pub fn set_hyper_parameters(
176 mut self,
177 input: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>,
178 ) -> Self {
179 self.inner = self.inner.set_hyper_parameters(input);
180 self
181 }
182 /// <p>Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>.</p>
183 /// <p>You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value pair. Each key and value is limited to 256 characters, as specified by the <code>Length Constraint</code>.</p><important>
184 /// <p>Do not include any security-sensitive information including account access IDs, secrets, or tokens in any hyperparameter fields. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by any security-sensitive information included in the request hyperparameter variable or plain text fields.</p>
185 /// </important>
186 pub fn get_hyper_parameters(&self) -> &::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>> {
187 self.inner.get_hyper_parameters()
188 }
189 /// <p>The registry path of the Docker image that contains the training algorithm and algorithm-specific metadata, including the input mode. For more information about algorithms provided by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. For information about providing your own algorithms, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using Your Own Algorithms with Amazon SageMaker</a>.</p>
190 pub fn algorithm_specification(mut self, input: crate::types::AlgorithmSpecification) -> Self {
191 self.inner = self.inner.algorithm_specification(input);
192 self
193 }
194 /// <p>The registry path of the Docker image that contains the training algorithm and algorithm-specific metadata, including the input mode. For more information about algorithms provided by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. For information about providing your own algorithms, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using Your Own Algorithms with Amazon SageMaker</a>.</p>
195 pub fn set_algorithm_specification(mut self, input: ::std::option::Option<crate::types::AlgorithmSpecification>) -> Self {
196 self.inner = self.inner.set_algorithm_specification(input);
197 self
198 }
199 /// <p>The registry path of the Docker image that contains the training algorithm and algorithm-specific metadata, including the input mode. For more information about algorithms provided by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. For information about providing your own algorithms, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using Your Own Algorithms with Amazon SageMaker</a>.</p>
200 pub fn get_algorithm_specification(&self) -> &::std::option::Option<crate::types::AlgorithmSpecification> {
201 self.inner.get_algorithm_specification()
202 }
203 /// <p>The Amazon Resource Name (ARN) of an IAM role that SageMaker can assume to perform tasks on your behalf.</p>
204 /// <p>During model training, SageMaker needs your permission to read input data from an S3 bucket, download a Docker image that contains training code, write model artifacts to an S3 bucket, write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant permissions for all of these tasks to an IAM role. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">SageMaker Roles</a>.</p><note>
205 /// <p>To be able to pass this role to SageMaker, the caller of this API must have the <code>iam:PassRole</code> permission.</p>
206 /// </note>
207 pub fn role_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
208 self.inner = self.inner.role_arn(input.into());
209 self
210 }
211 /// <p>The Amazon Resource Name (ARN) of an IAM role that SageMaker can assume to perform tasks on your behalf.</p>
212 /// <p>During model training, SageMaker needs your permission to read input data from an S3 bucket, download a Docker image that contains training code, write model artifacts to an S3 bucket, write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant permissions for all of these tasks to an IAM role. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">SageMaker Roles</a>.</p><note>
213 /// <p>To be able to pass this role to SageMaker, the caller of this API must have the <code>iam:PassRole</code> permission.</p>
214 /// </note>
215 pub fn set_role_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
216 self.inner = self.inner.set_role_arn(input);
217 self
218 }
219 /// <p>The Amazon Resource Name (ARN) of an IAM role that SageMaker can assume to perform tasks on your behalf.</p>
220 /// <p>During model training, SageMaker needs your permission to read input data from an S3 bucket, download a Docker image that contains training code, write model artifacts to an S3 bucket, write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant permissions for all of these tasks to an IAM role. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">SageMaker Roles</a>.</p><note>
221 /// <p>To be able to pass this role to SageMaker, the caller of this API must have the <code>iam:PassRole</code> permission.</p>
222 /// </note>
223 pub fn get_role_arn(&self) -> &::std::option::Option<::std::string::String> {
224 self.inner.get_role_arn()
225 }
226 ///
227 /// Appends an item to `InputDataConfig`.
228 ///
229 /// To override the contents of this collection use [`set_input_data_config`](Self::set_input_data_config).
230 ///
231 /// <p>An array of <code>Channel</code> objects. Each channel is a named input source. <code>InputDataConfig</code> describes the input data and its location.</p>
232 /// <p>Algorithms can accept input data from one or more channels. For example, an algorithm might have two channels of input data, <code>training_data</code> and <code>validation_data</code>. The configuration for each channel provides the S3, EFS, or FSx location where the input data is stored. It also provides information about the stored data: the MIME type, compression method, and whether the data is wrapped in RecordIO format.</p>
233 /// <p>Depending on the input mode that the algorithm supports, SageMaker either copies input data files from an S3 bucket to a local directory in the Docker container, or makes it available as input streams. For example, if you specify an EFS location, input data files are available as input streams. They do not need to be downloaded.</p>
234 /// <p>Your input must be in the same Amazon Web Services region as your training job.</p>
235 pub fn input_data_config(mut self, input: crate::types::Channel) -> Self {
236 self.inner = self.inner.input_data_config(input);
237 self
238 }
239 /// <p>An array of <code>Channel</code> objects. Each channel is a named input source. <code>InputDataConfig</code> describes the input data and its location.</p>
240 /// <p>Algorithms can accept input data from one or more channels. For example, an algorithm might have two channels of input data, <code>training_data</code> and <code>validation_data</code>. The configuration for each channel provides the S3, EFS, or FSx location where the input data is stored. It also provides information about the stored data: the MIME type, compression method, and whether the data is wrapped in RecordIO format.</p>
241 /// <p>Depending on the input mode that the algorithm supports, SageMaker either copies input data files from an S3 bucket to a local directory in the Docker container, or makes it available as input streams. For example, if you specify an EFS location, input data files are available as input streams. They do not need to be downloaded.</p>
242 /// <p>Your input must be in the same Amazon Web Services region as your training job.</p>
243 pub fn set_input_data_config(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Channel>>) -> Self {
244 self.inner = self.inner.set_input_data_config(input);
245 self
246 }
247 /// <p>An array of <code>Channel</code> objects. Each channel is a named input source. <code>InputDataConfig</code> describes the input data and its location.</p>
248 /// <p>Algorithms can accept input data from one or more channels. For example, an algorithm might have two channels of input data, <code>training_data</code> and <code>validation_data</code>. The configuration for each channel provides the S3, EFS, or FSx location where the input data is stored. It also provides information about the stored data: the MIME type, compression method, and whether the data is wrapped in RecordIO format.</p>
249 /// <p>Depending on the input mode that the algorithm supports, SageMaker either copies input data files from an S3 bucket to a local directory in the Docker container, or makes it available as input streams. For example, if you specify an EFS location, input data files are available as input streams. They do not need to be downloaded.</p>
250 /// <p>Your input must be in the same Amazon Web Services region as your training job.</p>
251 pub fn get_input_data_config(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Channel>> {
252 self.inner.get_input_data_config()
253 }
254 /// <p>Specifies the path to the S3 location where you want to store model artifacts. SageMaker creates subfolders for the artifacts.</p>
255 pub fn output_data_config(mut self, input: crate::types::OutputDataConfig) -> Self {
256 self.inner = self.inner.output_data_config(input);
257 self
258 }
259 /// <p>Specifies the path to the S3 location where you want to store model artifacts. SageMaker creates subfolders for the artifacts.</p>
260 pub fn set_output_data_config(mut self, input: ::std::option::Option<crate::types::OutputDataConfig>) -> Self {
261 self.inner = self.inner.set_output_data_config(input);
262 self
263 }
264 /// <p>Specifies the path to the S3 location where you want to store model artifacts. SageMaker creates subfolders for the artifacts.</p>
265 pub fn get_output_data_config(&self) -> &::std::option::Option<crate::types::OutputDataConfig> {
266 self.inner.get_output_data_config()
267 }
268 /// <p>The resources, including the ML compute instances and ML storage volumes, to use for model training.</p>
269 /// <p>ML storage volumes store model artifacts and incremental states. Training algorithms might also use ML storage volumes for scratch space. If you want SageMaker to use the ML storage volume to store the training data, choose <code>File</code> as the <code>TrainingInputMode</code> in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.</p>
270 pub fn resource_config(mut self, input: crate::types::ResourceConfig) -> Self {
271 self.inner = self.inner.resource_config(input);
272 self
273 }
274 /// <p>The resources, including the ML compute instances and ML storage volumes, to use for model training.</p>
275 /// <p>ML storage volumes store model artifacts and incremental states. Training algorithms might also use ML storage volumes for scratch space. If you want SageMaker to use the ML storage volume to store the training data, choose <code>File</code> as the <code>TrainingInputMode</code> in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.</p>
276 pub fn set_resource_config(mut self, input: ::std::option::Option<crate::types::ResourceConfig>) -> Self {
277 self.inner = self.inner.set_resource_config(input);
278 self
279 }
280 /// <p>The resources, including the ML compute instances and ML storage volumes, to use for model training.</p>
281 /// <p>ML storage volumes store model artifacts and incremental states. Training algorithms might also use ML storage volumes for scratch space. If you want SageMaker to use the ML storage volume to store the training data, choose <code>File</code> as the <code>TrainingInputMode</code> in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.</p>
282 pub fn get_resource_config(&self) -> &::std::option::Option<crate::types::ResourceConfig> {
283 self.inner.get_resource_config()
284 }
285 /// <p>A <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html">VpcConfig</a> object that specifies the VPC that you want your training job to connect to. Control access to and from your training container by configuring the VPC. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect Training Jobs by Using an Amazon Virtual Private Cloud</a>.</p>
286 pub fn vpc_config(mut self, input: crate::types::VpcConfig) -> Self {
287 self.inner = self.inner.vpc_config(input);
288 self
289 }
290 /// <p>A <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html">VpcConfig</a> object that specifies the VPC that you want your training job to connect to. Control access to and from your training container by configuring the VPC. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect Training Jobs by Using an Amazon Virtual Private Cloud</a>.</p>
291 pub fn set_vpc_config(mut self, input: ::std::option::Option<crate::types::VpcConfig>) -> Self {
292 self.inner = self.inner.set_vpc_config(input);
293 self
294 }
295 /// <p>A <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html">VpcConfig</a> object that specifies the VPC that you want your training job to connect to. Control access to and from your training container by configuring the VPC. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect Training Jobs by Using an Amazon Virtual Private Cloud</a>.</p>
296 pub fn get_vpc_config(&self) -> &::std::option::Option<crate::types::VpcConfig> {
297 self.inner.get_vpc_config()
298 }
299 /// <p>Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.</p>
300 /// <p>To stop a job, SageMaker sends the algorithm the <code>SIGTERM</code> signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.</p>
301 pub fn stopping_condition(mut self, input: crate::types::StoppingCondition) -> Self {
302 self.inner = self.inner.stopping_condition(input);
303 self
304 }
305 /// <p>Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.</p>
306 /// <p>To stop a job, SageMaker sends the algorithm the <code>SIGTERM</code> signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.</p>
307 pub fn set_stopping_condition(mut self, input: ::std::option::Option<crate::types::StoppingCondition>) -> Self {
308 self.inner = self.inner.set_stopping_condition(input);
309 self
310 }
311 /// <p>Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.</p>
312 /// <p>To stop a job, SageMaker sends the algorithm the <code>SIGTERM</code> signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.</p>
313 pub fn get_stopping_condition(&self) -> &::std::option::Option<crate::types::StoppingCondition> {
314 self.inner.get_stopping_condition()
315 }
316 ///
317 /// Appends an item to `Tags`.
318 ///
319 /// To override the contents of this collection use [`set_tags`](Self::set_tags).
320 ///
321 /// <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services Resources</a>.</p><important>
322 /// <p>Do not include any security-sensitive information including account access IDs, secrets, or tokens in any tags. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by any security-sensitive information included in the request tag variable or plain text fields.</p>
323 /// </important>
324 pub fn tags(mut self, input: crate::types::Tag) -> Self {
325 self.inner = self.inner.tags(input);
326 self
327 }
328 /// <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services Resources</a>.</p><important>
329 /// <p>Do not include any security-sensitive information including account access IDs, secrets, or tokens in any tags. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by any security-sensitive information included in the request tag variable or plain text fields.</p>
330 /// </important>
331 pub fn set_tags(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>) -> Self {
332 self.inner = self.inner.set_tags(input);
333 self
334 }
335 /// <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services Resources</a>.</p><important>
336 /// <p>Do not include any security-sensitive information including account access IDs, secrets, or tokens in any tags. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by any security-sensitive information included in the request tag variable or plain text fields.</p>
337 /// </important>
338 pub fn get_tags(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Tag>> {
339 self.inner.get_tags()
340 }
341 /// <p>Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If you enable network isolation for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.</p>
342 pub fn enable_network_isolation(mut self, input: bool) -> Self {
343 self.inner = self.inner.enable_network_isolation(input);
344 self
345 }
346 /// <p>Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If you enable network isolation for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.</p>
347 pub fn set_enable_network_isolation(mut self, input: ::std::option::Option<bool>) -> Self {
348 self.inner = self.inner.set_enable_network_isolation(input);
349 self
350 }
351 /// <p>Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If you enable network isolation for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.</p>
352 pub fn get_enable_network_isolation(&self) -> &::std::option::Option<bool> {
353 self.inner.get_enable_network_isolation()
354 }
355 /// <p>To encrypt all communications between ML compute instances in distributed training, choose <code>True</code>. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html">Protect Communications Between ML Compute Instances in a Distributed Training Job</a>.</p>
356 pub fn enable_inter_container_traffic_encryption(mut self, input: bool) -> Self {
357 self.inner = self.inner.enable_inter_container_traffic_encryption(input);
358 self
359 }
360 /// <p>To encrypt all communications between ML compute instances in distributed training, choose <code>True</code>. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html">Protect Communications Between ML Compute Instances in a Distributed Training Job</a>.</p>
361 pub fn set_enable_inter_container_traffic_encryption(mut self, input: ::std::option::Option<bool>) -> Self {
362 self.inner = self.inner.set_enable_inter_container_traffic_encryption(input);
363 self
364 }
365 /// <p>To encrypt all communications between ML compute instances in distributed training, choose <code>True</code>. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html">Protect Communications Between ML Compute Instances in a Distributed Training Job</a>.</p>
366 pub fn get_enable_inter_container_traffic_encryption(&self) -> &::std::option::Option<bool> {
367 self.inner.get_enable_inter_container_traffic_encryption()
368 }
369 /// <p>To train models using managed spot training, choose <code>True</code>. Managed spot training provides a fully managed and scalable infrastructure for training machine learning models. this option is useful when training jobs can be interrupted and when there is flexibility when the training job is run.</p>
370 /// <p>The complete and intermediate results of jobs are stored in an Amazon S3 bucket, and can be used as a starting point to train models incrementally. Amazon SageMaker provides metrics and logs in CloudWatch. They can be used to see when managed spot training jobs are running, interrupted, resumed, or completed.</p>
371 pub fn enable_managed_spot_training(mut self, input: bool) -> Self {
372 self.inner = self.inner.enable_managed_spot_training(input);
373 self
374 }
375 /// <p>To train models using managed spot training, choose <code>True</code>. Managed spot training provides a fully managed and scalable infrastructure for training machine learning models. this option is useful when training jobs can be interrupted and when there is flexibility when the training job is run.</p>
376 /// <p>The complete and intermediate results of jobs are stored in an Amazon S3 bucket, and can be used as a starting point to train models incrementally. Amazon SageMaker provides metrics and logs in CloudWatch. They can be used to see when managed spot training jobs are running, interrupted, resumed, or completed.</p>
377 pub fn set_enable_managed_spot_training(mut self, input: ::std::option::Option<bool>) -> Self {
378 self.inner = self.inner.set_enable_managed_spot_training(input);
379 self
380 }
381 /// <p>To train models using managed spot training, choose <code>True</code>. Managed spot training provides a fully managed and scalable infrastructure for training machine learning models. this option is useful when training jobs can be interrupted and when there is flexibility when the training job is run.</p>
382 /// <p>The complete and intermediate results of jobs are stored in an Amazon S3 bucket, and can be used as a starting point to train models incrementally. Amazon SageMaker provides metrics and logs in CloudWatch. They can be used to see when managed spot training jobs are running, interrupted, resumed, or completed.</p>
383 pub fn get_enable_managed_spot_training(&self) -> &::std::option::Option<bool> {
384 self.inner.get_enable_managed_spot_training()
385 }
386 /// <p>Contains information about the output location for managed spot training checkpoint data.</p>
387 pub fn checkpoint_config(mut self, input: crate::types::CheckpointConfig) -> Self {
388 self.inner = self.inner.checkpoint_config(input);
389 self
390 }
391 /// <p>Contains information about the output location for managed spot training checkpoint data.</p>
392 pub fn set_checkpoint_config(mut self, input: ::std::option::Option<crate::types::CheckpointConfig>) -> Self {
393 self.inner = self.inner.set_checkpoint_config(input);
394 self
395 }
396 /// <p>Contains information about the output location for managed spot training checkpoint data.</p>
397 pub fn get_checkpoint_config(&self) -> &::std::option::Option<crate::types::CheckpointConfig> {
398 self.inner.get_checkpoint_config()
399 }
400 /// <p>Configuration information for the Amazon SageMaker Debugger hook parameters, metric and tensor collections, and storage paths. To learn more about how to configure the <code>DebugHookConfig</code> parameter, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html">Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job</a>.</p>
401 pub fn debug_hook_config(mut self, input: crate::types::DebugHookConfig) -> Self {
402 self.inner = self.inner.debug_hook_config(input);
403 self
404 }
405 /// <p>Configuration information for the Amazon SageMaker Debugger hook parameters, metric and tensor collections, and storage paths. To learn more about how to configure the <code>DebugHookConfig</code> parameter, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html">Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job</a>.</p>
406 pub fn set_debug_hook_config(mut self, input: ::std::option::Option<crate::types::DebugHookConfig>) -> Self {
407 self.inner = self.inner.set_debug_hook_config(input);
408 self
409 }
410 /// <p>Configuration information for the Amazon SageMaker Debugger hook parameters, metric and tensor collections, and storage paths. To learn more about how to configure the <code>DebugHookConfig</code> parameter, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html">Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job</a>.</p>
411 pub fn get_debug_hook_config(&self) -> &::std::option::Option<crate::types::DebugHookConfig> {
412 self.inner.get_debug_hook_config()
413 }
414 ///
415 /// Appends an item to `DebugRuleConfigurations`.
416 ///
417 /// To override the contents of this collection use [`set_debug_rule_configurations`](Self::set_debug_rule_configurations).
418 ///
419 /// <p>Configuration information for Amazon SageMaker Debugger rules for debugging output tensors.</p>
420 pub fn debug_rule_configurations(mut self, input: crate::types::DebugRuleConfiguration) -> Self {
421 self.inner = self.inner.debug_rule_configurations(input);
422 self
423 }
424 /// <p>Configuration information for Amazon SageMaker Debugger rules for debugging output tensors.</p>
425 pub fn set_debug_rule_configurations(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::DebugRuleConfiguration>>) -> Self {
426 self.inner = self.inner.set_debug_rule_configurations(input);
427 self
428 }
429 /// <p>Configuration information for Amazon SageMaker Debugger rules for debugging output tensors.</p>
430 pub fn get_debug_rule_configurations(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::DebugRuleConfiguration>> {
431 self.inner.get_debug_rule_configurations()
432 }
433 /// <p>Configuration of storage locations for the Amazon SageMaker Debugger TensorBoard output data.</p>
434 pub fn tensor_board_output_config(mut self, input: crate::types::TensorBoardOutputConfig) -> Self {
435 self.inner = self.inner.tensor_board_output_config(input);
436 self
437 }
438 /// <p>Configuration of storage locations for the Amazon SageMaker Debugger TensorBoard output data.</p>
439 pub fn set_tensor_board_output_config(mut self, input: ::std::option::Option<crate::types::TensorBoardOutputConfig>) -> Self {
440 self.inner = self.inner.set_tensor_board_output_config(input);
441 self
442 }
443 /// <p>Configuration of storage locations for the Amazon SageMaker Debugger TensorBoard output data.</p>
444 pub fn get_tensor_board_output_config(&self) -> &::std::option::Option<crate::types::TensorBoardOutputConfig> {
445 self.inner.get_tensor_board_output_config()
446 }
447 /// <p>Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:</p>
448 /// <ul>
449 /// <li>
450 /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html">CreateProcessingJob</a></p></li>
451 /// <li>
452 /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html">CreateTrainingJob</a></p></li>
453 /// <li>
454 /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html">CreateTransformJob</a></p></li>
455 /// </ul>
456 pub fn experiment_config(mut self, input: crate::types::ExperimentConfig) -> Self {
457 self.inner = self.inner.experiment_config(input);
458 self
459 }
460 /// <p>Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:</p>
461 /// <ul>
462 /// <li>
463 /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html">CreateProcessingJob</a></p></li>
464 /// <li>
465 /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html">CreateTrainingJob</a></p></li>
466 /// <li>
467 /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html">CreateTransformJob</a></p></li>
468 /// </ul>
469 pub fn set_experiment_config(mut self, input: ::std::option::Option<crate::types::ExperimentConfig>) -> Self {
470 self.inner = self.inner.set_experiment_config(input);
471 self
472 }
473 /// <p>Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:</p>
474 /// <ul>
475 /// <li>
476 /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html">CreateProcessingJob</a></p></li>
477 /// <li>
478 /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html">CreateTrainingJob</a></p></li>
479 /// <li>
480 /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html">CreateTransformJob</a></p></li>
481 /// </ul>
482 pub fn get_experiment_config(&self) -> &::std::option::Option<crate::types::ExperimentConfig> {
483 self.inner.get_experiment_config()
484 }
485 /// <p>Configuration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths.</p>
486 pub fn profiler_config(mut self, input: crate::types::ProfilerConfig) -> Self {
487 self.inner = self.inner.profiler_config(input);
488 self
489 }
490 /// <p>Configuration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths.</p>
491 pub fn set_profiler_config(mut self, input: ::std::option::Option<crate::types::ProfilerConfig>) -> Self {
492 self.inner = self.inner.set_profiler_config(input);
493 self
494 }
495 /// <p>Configuration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths.</p>
496 pub fn get_profiler_config(&self) -> &::std::option::Option<crate::types::ProfilerConfig> {
497 self.inner.get_profiler_config()
498 }
499 ///
500 /// Appends an item to `ProfilerRuleConfigurations`.
501 ///
502 /// To override the contents of this collection use [`set_profiler_rule_configurations`](Self::set_profiler_rule_configurations).
503 ///
504 /// <p>Configuration information for Amazon SageMaker Debugger rules for profiling system and framework metrics.</p>
505 pub fn profiler_rule_configurations(mut self, input: crate::types::ProfilerRuleConfiguration) -> Self {
506 self.inner = self.inner.profiler_rule_configurations(input);
507 self
508 }
509 /// <p>Configuration information for Amazon SageMaker Debugger rules for profiling system and framework metrics.</p>
510 pub fn set_profiler_rule_configurations(
511 mut self,
512 input: ::std::option::Option<::std::vec::Vec<crate::types::ProfilerRuleConfiguration>>,
513 ) -> Self {
514 self.inner = self.inner.set_profiler_rule_configurations(input);
515 self
516 }
517 /// <p>Configuration information for Amazon SageMaker Debugger rules for profiling system and framework metrics.</p>
518 pub fn get_profiler_rule_configurations(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::ProfilerRuleConfiguration>> {
519 self.inner.get_profiler_rule_configurations()
520 }
521 ///
522 /// Adds a key-value pair to `Environment`.
523 ///
524 /// To override the contents of this collection use [`set_environment`](Self::set_environment).
525 ///
526 /// <p>The environment variables to set in the Docker container.</p><important>
527 /// <p>Do not include any security-sensitive information including account access IDs, secrets, or tokens in any environment fields. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by security-sensitive information included in the request environment variable or plain text fields.</p>
528 /// </important>
529 pub fn environment(mut self, k: impl ::std::convert::Into<::std::string::String>, v: impl ::std::convert::Into<::std::string::String>) -> Self {
530 self.inner = self.inner.environment(k.into(), v.into());
531 self
532 }
533 /// <p>The environment variables to set in the Docker container.</p><important>
534 /// <p>Do not include any security-sensitive information including account access IDs, secrets, or tokens in any environment fields. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by security-sensitive information included in the request environment variable or plain text fields.</p>
535 /// </important>
536 pub fn set_environment(
537 mut self,
538 input: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>,
539 ) -> Self {
540 self.inner = self.inner.set_environment(input);
541 self
542 }
543 /// <p>The environment variables to set in the Docker container.</p><important>
544 /// <p>Do not include any security-sensitive information including account access IDs, secrets, or tokens in any environment fields. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by security-sensitive information included in the request environment variable or plain text fields.</p>
545 /// </important>
546 pub fn get_environment(&self) -> &::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>> {
547 self.inner.get_environment()
548 }
549 /// <p>The number of times to retry the job when the job fails due to an <code>InternalServerError</code>.</p>
550 pub fn retry_strategy(mut self, input: crate::types::RetryStrategy) -> Self {
551 self.inner = self.inner.retry_strategy(input);
552 self
553 }
554 /// <p>The number of times to retry the job when the job fails due to an <code>InternalServerError</code>.</p>
555 pub fn set_retry_strategy(mut self, input: ::std::option::Option<crate::types::RetryStrategy>) -> Self {
556 self.inner = self.inner.set_retry_strategy(input);
557 self
558 }
559 /// <p>The number of times to retry the job when the job fails due to an <code>InternalServerError</code>.</p>
560 pub fn get_retry_strategy(&self) -> &::std::option::Option<crate::types::RetryStrategy> {
561 self.inner.get_retry_strategy()
562 }
563 /// <p>Configuration for remote debugging. To learn more about the remote debugging functionality of SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-remote-debugging.html">Access a training container through Amazon Web Services Systems Manager (SSM) for remote debugging</a>.</p>
564 pub fn remote_debug_config(mut self, input: crate::types::RemoteDebugConfig) -> Self {
565 self.inner = self.inner.remote_debug_config(input);
566 self
567 }
568 /// <p>Configuration for remote debugging. To learn more about the remote debugging functionality of SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-remote-debugging.html">Access a training container through Amazon Web Services Systems Manager (SSM) for remote debugging</a>.</p>
569 pub fn set_remote_debug_config(mut self, input: ::std::option::Option<crate::types::RemoteDebugConfig>) -> Self {
570 self.inner = self.inner.set_remote_debug_config(input);
571 self
572 }
573 /// <p>Configuration for remote debugging. To learn more about the remote debugging functionality of SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-remote-debugging.html">Access a training container through Amazon Web Services Systems Manager (SSM) for remote debugging</a>.</p>
574 pub fn get_remote_debug_config(&self) -> &::std::option::Option<crate::types::RemoteDebugConfig> {
575 self.inner.get_remote_debug_config()
576 }
577 /// <p>Contains information about the infrastructure health check configuration for the training job.</p>
578 pub fn infra_check_config(mut self, input: crate::types::InfraCheckConfig) -> Self {
579 self.inner = self.inner.infra_check_config(input);
580 self
581 }
582 /// <p>Contains information about the infrastructure health check configuration for the training job.</p>
583 pub fn set_infra_check_config(mut self, input: ::std::option::Option<crate::types::InfraCheckConfig>) -> Self {
584 self.inner = self.inner.set_infra_check_config(input);
585 self
586 }
587 /// <p>Contains information about the infrastructure health check configuration for the training job.</p>
588 pub fn get_infra_check_config(&self) -> &::std::option::Option<crate::types::InfraCheckConfig> {
589 self.inner.get_infra_check_config()
590 }
591 /// <p>Contains information about attribute-based access control (ABAC) for the training job.</p>
592 pub fn session_chaining_config(mut self, input: crate::types::SessionChainingConfig) -> Self {
593 self.inner = self.inner.session_chaining_config(input);
594 self
595 }
596 /// <p>Contains information about attribute-based access control (ABAC) for the training job.</p>
597 pub fn set_session_chaining_config(mut self, input: ::std::option::Option<crate::types::SessionChainingConfig>) -> Self {
598 self.inner = self.inner.set_session_chaining_config(input);
599 self
600 }
601 /// <p>Contains information about attribute-based access control (ABAC) for the training job.</p>
602 pub fn get_session_chaining_config(&self) -> &::std::option::Option<crate::types::SessionChainingConfig> {
603 self.inner.get_session_chaining_config()
604 }
605}