aws_sdk_sagemaker/operation/create_auto_ml_job/builders.rs
1// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
2pub use crate::operation::create_auto_ml_job::_create_auto_ml_job_output::CreateAutoMlJobOutputBuilder;
3
4pub use crate::operation::create_auto_ml_job::_create_auto_ml_job_input::CreateAutoMlJobInputBuilder;
5
6impl crate::operation::create_auto_ml_job::builders::CreateAutoMlJobInputBuilder {
7 /// Sends a request with this input using the given client.
8 pub async fn send_with(
9 self,
10 client: &crate::Client,
11 ) -> ::std::result::Result<
12 crate::operation::create_auto_ml_job::CreateAutoMlJobOutput,
13 ::aws_smithy_runtime_api::client::result::SdkError<
14 crate::operation::create_auto_ml_job::CreateAutoMLJobError,
15 ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
16 >,
17 > {
18 let mut fluent_builder = client.create_auto_ml_job();
19 fluent_builder.inner = self;
20 fluent_builder.send().await
21 }
22}
23/// Fluent builder constructing a request to `CreateAutoMLJob`.
24///
25/// <p>Creates an Autopilot job also referred to as Autopilot experiment or AutoML job.</p>
26/// <p>An AutoML job in SageMaker AI is a fully automated process that allows you to build machine learning models with minimal effort and machine learning expertise. When initiating an AutoML job, you provide your data and optionally specify parameters tailored to your use case. SageMaker AI then automates the entire model development lifecycle, including data preprocessing, model training, tuning, and evaluation. AutoML jobs are designed to simplify and accelerate the model building process by automating various tasks and exploring different combinations of machine learning algorithms, data preprocessing techniques, and hyperparameter values. The output of an AutoML job comprises one or more trained models ready for deployment and inference. Additionally, SageMaker AI AutoML jobs generate a candidate model leaderboard, allowing you to select the best-performing model for deployment.</p>
27/// <p>For more information about AutoML jobs, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html">https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html</a> in the SageMaker AI developer guide.</p><note>
28/// <p>We recommend using the new versions <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html">CreateAutoMLJobV2</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html">DescribeAutoMLJobV2</a>, which offer backward compatibility.</p>
29/// <p><code>CreateAutoMLJobV2</code> can manage tabular problem types identical to those of its previous version <code>CreateAutoMLJob</code>, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning).</p>
30/// <p>Find guidelines about how to migrate a <code>CreateAutoMLJob</code> to <code>CreateAutoMLJobV2</code> in <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2">Migrate a CreateAutoMLJob to CreateAutoMLJobV2</a>.</p>
31/// </note>
32/// <p>You can find the best-performing model after you run an AutoML job by calling <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html">DescribeAutoMLJobV2</a> (recommended) or <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html">DescribeAutoMLJob</a>.</p>
33#[derive(::std::clone::Clone, ::std::fmt::Debug)]
34pub struct CreateAutoMLJobFluentBuilder {
35 handle: ::std::sync::Arc<crate::client::Handle>,
36 inner: crate::operation::create_auto_ml_job::builders::CreateAutoMlJobInputBuilder,
37 config_override: ::std::option::Option<crate::config::Builder>,
38}
39impl
40 crate::client::customize::internal::CustomizableSend<
41 crate::operation::create_auto_ml_job::CreateAutoMlJobOutput,
42 crate::operation::create_auto_ml_job::CreateAutoMLJobError,
43 > for CreateAutoMLJobFluentBuilder
44{
45 fn send(
46 self,
47 config_override: crate::config::Builder,
48 ) -> crate::client::customize::internal::BoxFuture<
49 crate::client::customize::internal::SendResult<
50 crate::operation::create_auto_ml_job::CreateAutoMlJobOutput,
51 crate::operation::create_auto_ml_job::CreateAutoMLJobError,
52 >,
53 > {
54 ::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
55 }
56}
57impl CreateAutoMLJobFluentBuilder {
58 /// Creates a new `CreateAutoMLJobFluentBuilder`.
59 pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
60 Self {
61 handle,
62 inner: ::std::default::Default::default(),
63 config_override: ::std::option::Option::None,
64 }
65 }
66 /// Access the CreateAutoMLJob as a reference.
67 pub fn as_input(&self) -> &crate::operation::create_auto_ml_job::builders::CreateAutoMlJobInputBuilder {
68 &self.inner
69 }
70 /// Sends the request and returns the response.
71 ///
72 /// If an error occurs, an `SdkError` will be returned with additional details that
73 /// can be matched against.
74 ///
75 /// By default, any retryable failures will be retried twice. Retry behavior
76 /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
77 /// set when configuring the client.
78 pub async fn send(
79 self,
80 ) -> ::std::result::Result<
81 crate::operation::create_auto_ml_job::CreateAutoMlJobOutput,
82 ::aws_smithy_runtime_api::client::result::SdkError<
83 crate::operation::create_auto_ml_job::CreateAutoMLJobError,
84 ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
85 >,
86 > {
87 let input = self
88 .inner
89 .build()
90 .map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
91 let runtime_plugins = crate::operation::create_auto_ml_job::CreateAutoMLJob::operation_runtime_plugins(
92 self.handle.runtime_plugins.clone(),
93 &self.handle.conf,
94 self.config_override,
95 );
96 crate::operation::create_auto_ml_job::CreateAutoMLJob::orchestrate(&runtime_plugins, input).await
97 }
98
99 /// Consumes this builder, creating a customizable operation that can be modified before being sent.
100 pub fn customize(
101 self,
102 ) -> crate::client::customize::CustomizableOperation<
103 crate::operation::create_auto_ml_job::CreateAutoMlJobOutput,
104 crate::operation::create_auto_ml_job::CreateAutoMLJobError,
105 Self,
106 > {
107 crate::client::customize::CustomizableOperation::new(self)
108 }
109 pub(crate) fn config_override(mut self, config_override: impl ::std::convert::Into<crate::config::Builder>) -> Self {
110 self.set_config_override(::std::option::Option::Some(config_override.into()));
111 self
112 }
113
114 pub(crate) fn set_config_override(&mut self, config_override: ::std::option::Option<crate::config::Builder>) -> &mut Self {
115 self.config_override = config_override;
116 self
117 }
118 /// <p>Identifies an Autopilot job. The name must be unique to your account and is case insensitive.</p>
119 pub fn auto_ml_job_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
120 self.inner = self.inner.auto_ml_job_name(input.into());
121 self
122 }
123 /// <p>Identifies an Autopilot job. The name must be unique to your account and is case insensitive.</p>
124 pub fn set_auto_ml_job_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
125 self.inner = self.inner.set_auto_ml_job_name(input);
126 self
127 }
128 /// <p>Identifies an Autopilot job. The name must be unique to your account and is case insensitive.</p>
129 pub fn get_auto_ml_job_name(&self) -> &::std::option::Option<::std::string::String> {
130 self.inner.get_auto_ml_job_name()
131 }
132 ///
133 /// Appends an item to `InputDataConfig`.
134 ///
135 /// To override the contents of this collection use [`set_input_data_config`](Self::set_input_data_config).
136 ///
137 /// <p>An array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to <code>InputDataConfig</code> supported by <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html">HyperParameterTrainingJobDefinition</a>. Format(s) supported: CSV, Parquet. A minimum of 500 rows is required for the training dataset. There is not a minimum number of rows required for the validation dataset.</p>
138 pub fn input_data_config(mut self, input: crate::types::AutoMlChannel) -> Self {
139 self.inner = self.inner.input_data_config(input);
140 self
141 }
142 /// <p>An array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to <code>InputDataConfig</code> supported by <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html">HyperParameterTrainingJobDefinition</a>. Format(s) supported: CSV, Parquet. A minimum of 500 rows is required for the training dataset. There is not a minimum number of rows required for the validation dataset.</p>
143 pub fn set_input_data_config(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::AutoMlChannel>>) -> Self {
144 self.inner = self.inner.set_input_data_config(input);
145 self
146 }
147 /// <p>An array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to <code>InputDataConfig</code> supported by <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html">HyperParameterTrainingJobDefinition</a>. Format(s) supported: CSV, Parquet. A minimum of 500 rows is required for the training dataset. There is not a minimum number of rows required for the validation dataset.</p>
148 pub fn get_input_data_config(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::AutoMlChannel>> {
149 self.inner.get_input_data_config()
150 }
151 /// <p>Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV.</p>
152 pub fn output_data_config(mut self, input: crate::types::AutoMlOutputDataConfig) -> Self {
153 self.inner = self.inner.output_data_config(input);
154 self
155 }
156 /// <p>Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV.</p>
157 pub fn set_output_data_config(mut self, input: ::std::option::Option<crate::types::AutoMlOutputDataConfig>) -> Self {
158 self.inner = self.inner.set_output_data_config(input);
159 self
160 }
161 /// <p>Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV.</p>
162 pub fn get_output_data_config(&self) -> &::std::option::Option<crate::types::AutoMlOutputDataConfig> {
163 self.inner.get_output_data_config()
164 }
165 /// <p>Defines the type of supervised learning problem available for the candidates. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types"> SageMaker Autopilot problem types</a>.</p>
166 pub fn problem_type(mut self, input: crate::types::ProblemType) -> Self {
167 self.inner = self.inner.problem_type(input);
168 self
169 }
170 /// <p>Defines the type of supervised learning problem available for the candidates. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types"> SageMaker Autopilot problem types</a>.</p>
171 pub fn set_problem_type(mut self, input: ::std::option::Option<crate::types::ProblemType>) -> Self {
172 self.inner = self.inner.set_problem_type(input);
173 self
174 }
175 /// <p>Defines the type of supervised learning problem available for the candidates. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types"> SageMaker Autopilot problem types</a>.</p>
176 pub fn get_problem_type(&self) -> &::std::option::Option<crate::types::ProblemType> {
177 self.inner.get_problem_type()
178 }
179 /// <p>Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. See <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html">AutoMLJobObjective</a> for the default values.</p>
180 pub fn auto_ml_job_objective(mut self, input: crate::types::AutoMlJobObjective) -> Self {
181 self.inner = self.inner.auto_ml_job_objective(input);
182 self
183 }
184 /// <p>Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. See <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html">AutoMLJobObjective</a> for the default values.</p>
185 pub fn set_auto_ml_job_objective(mut self, input: ::std::option::Option<crate::types::AutoMlJobObjective>) -> Self {
186 self.inner = self.inner.set_auto_ml_job_objective(input);
187 self
188 }
189 /// <p>Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. See <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html">AutoMLJobObjective</a> for the default values.</p>
190 pub fn get_auto_ml_job_objective(&self) -> &::std::option::Option<crate::types::AutoMlJobObjective> {
191 self.inner.get_auto_ml_job_objective()
192 }
193 /// <p>A collection of settings used to configure an AutoML job.</p>
194 pub fn auto_ml_job_config(mut self, input: crate::types::AutoMlJobConfig) -> Self {
195 self.inner = self.inner.auto_ml_job_config(input);
196 self
197 }
198 /// <p>A collection of settings used to configure an AutoML job.</p>
199 pub fn set_auto_ml_job_config(mut self, input: ::std::option::Option<crate::types::AutoMlJobConfig>) -> Self {
200 self.inner = self.inner.set_auto_ml_job_config(input);
201 self
202 }
203 /// <p>A collection of settings used to configure an AutoML job.</p>
204 pub fn get_auto_ml_job_config(&self) -> &::std::option::Option<crate::types::AutoMlJobConfig> {
205 self.inner.get_auto_ml_job_config()
206 }
207 /// <p>The ARN of the role that is used to access the data.</p>
208 pub fn role_arn(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
209 self.inner = self.inner.role_arn(input.into());
210 self
211 }
212 /// <p>The ARN of the role that is used to access the data.</p>
213 pub fn set_role_arn(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
214 self.inner = self.inner.set_role_arn(input);
215 self
216 }
217 /// <p>The ARN of the role that is used to access the data.</p>
218 pub fn get_role_arn(&self) -> &::std::option::Option<::std::string::String> {
219 self.inner.get_role_arn()
220 }
221 /// <p>Generates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.</p>
222 pub fn generate_candidate_definitions_only(mut self, input: bool) -> Self {
223 self.inner = self.inner.generate_candidate_definitions_only(input);
224 self
225 }
226 /// <p>Generates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.</p>
227 pub fn set_generate_candidate_definitions_only(mut self, input: ::std::option::Option<bool>) -> Self {
228 self.inner = self.inner.set_generate_candidate_definitions_only(input);
229 self
230 }
231 /// <p>Generates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.</p>
232 pub fn get_generate_candidate_definitions_only(&self) -> &::std::option::Option<bool> {
233 self.inner.get_generate_candidate_definitions_only()
234 }
235 ///
236 /// Appends an item to `Tags`.
237 ///
238 /// To override the contents of this collection use [`set_tags`](Self::set_tags).
239 ///
240 /// <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web ServicesResources</a>. Tag keys must be unique per resource.</p>
241 pub fn tags(mut self, input: crate::types::Tag) -> Self {
242 self.inner = self.inner.tags(input);
243 self
244 }
245 /// <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web ServicesResources</a>. Tag keys must be unique per resource.</p>
246 pub fn set_tags(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>) -> Self {
247 self.inner = self.inner.set_tags(input);
248 self
249 }
250 /// <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web ServicesResources</a>. Tag keys must be unique per resource.</p>
251 pub fn get_tags(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Tag>> {
252 self.inner.get_tags()
253 }
254 /// <p>Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.</p>
255 pub fn model_deploy_config(mut self, input: crate::types::ModelDeployConfig) -> Self {
256 self.inner = self.inner.model_deploy_config(input);
257 self
258 }
259 /// <p>Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.</p>
260 pub fn set_model_deploy_config(mut self, input: ::std::option::Option<crate::types::ModelDeployConfig>) -> Self {
261 self.inner = self.inner.set_model_deploy_config(input);
262 self
263 }
264 /// <p>Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.</p>
265 pub fn get_model_deploy_config(&self) -> &::std::option::Option<crate::types::ModelDeployConfig> {
266 self.inner.get_model_deploy_config()
267 }
268}