aws_sdk_sagemaker/operation/create_hyper_parameter_tuning_job/
builders.rs

1// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
2pub use crate::operation::create_hyper_parameter_tuning_job::_create_hyper_parameter_tuning_job_output::CreateHyperParameterTuningJobOutputBuilder;
3
4pub use crate::operation::create_hyper_parameter_tuning_job::_create_hyper_parameter_tuning_job_input::CreateHyperParameterTuningJobInputBuilder;
5
6impl crate::operation::create_hyper_parameter_tuning_job::builders::CreateHyperParameterTuningJobInputBuilder {
7    /// Sends a request with this input using the given client.
8    pub async fn send_with(
9        self,
10        client: &crate::Client,
11    ) -> ::std::result::Result<
12        crate::operation::create_hyper_parameter_tuning_job::CreateHyperParameterTuningJobOutput,
13        ::aws_smithy_runtime_api::client::result::SdkError<
14            crate::operation::create_hyper_parameter_tuning_job::CreateHyperParameterTuningJobError,
15            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
16        >,
17    > {
18        let mut fluent_builder = client.create_hyper_parameter_tuning_job();
19        fluent_builder.inner = self;
20        fluent_builder.send().await
21    }
22}
23/// Fluent builder constructing a request to `CreateHyperParameterTuningJob`.
24///
25/// <p>Starts a hyperparameter tuning job. A hyperparameter tuning job finds the best version of a model by running many training jobs on your dataset using the algorithm you choose and values for hyperparameters within ranges that you specify. It then chooses the hyperparameter values that result in a model that performs the best, as measured by an objective metric that you choose.</p>
26/// <p>A hyperparameter tuning job automatically creates Amazon SageMaker experiments, trials, and trial components for each training job that it runs. You can view these entities in Amazon SageMaker Studio. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/experiments-view-compare.html#experiments-view">View Experiments, Trials, and Trial Components</a>.</p><important>
27/// <p>Do not include any security-sensitive information including account access IDs, secrets, or tokens in any hyperparameter fields. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by any security-sensitive information included in the request hyperparameter variable or plain text fields..</p>
28/// </important>
29#[derive(::std::clone::Clone, ::std::fmt::Debug)]
30pub struct CreateHyperParameterTuningJobFluentBuilder {
31    handle: ::std::sync::Arc<crate::client::Handle>,
32    inner: crate::operation::create_hyper_parameter_tuning_job::builders::CreateHyperParameterTuningJobInputBuilder,
33    config_override: ::std::option::Option<crate::config::Builder>,
34}
35impl
36    crate::client::customize::internal::CustomizableSend<
37        crate::operation::create_hyper_parameter_tuning_job::CreateHyperParameterTuningJobOutput,
38        crate::operation::create_hyper_parameter_tuning_job::CreateHyperParameterTuningJobError,
39    > for CreateHyperParameterTuningJobFluentBuilder
40{
41    fn send(
42        self,
43        config_override: crate::config::Builder,
44    ) -> crate::client::customize::internal::BoxFuture<
45        crate::client::customize::internal::SendResult<
46            crate::operation::create_hyper_parameter_tuning_job::CreateHyperParameterTuningJobOutput,
47            crate::operation::create_hyper_parameter_tuning_job::CreateHyperParameterTuningJobError,
48        >,
49    > {
50        ::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
51    }
52}
53impl CreateHyperParameterTuningJobFluentBuilder {
54    /// Creates a new `CreateHyperParameterTuningJobFluentBuilder`.
55    pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
56        Self {
57            handle,
58            inner: ::std::default::Default::default(),
59            config_override: ::std::option::Option::None,
60        }
61    }
62    /// Access the CreateHyperParameterTuningJob as a reference.
63    pub fn as_input(&self) -> &crate::operation::create_hyper_parameter_tuning_job::builders::CreateHyperParameterTuningJobInputBuilder {
64        &self.inner
65    }
66    /// Sends the request and returns the response.
67    ///
68    /// If an error occurs, an `SdkError` will be returned with additional details that
69    /// can be matched against.
70    ///
71    /// By default, any retryable failures will be retried twice. Retry behavior
72    /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
73    /// set when configuring the client.
74    pub async fn send(
75        self,
76    ) -> ::std::result::Result<
77        crate::operation::create_hyper_parameter_tuning_job::CreateHyperParameterTuningJobOutput,
78        ::aws_smithy_runtime_api::client::result::SdkError<
79            crate::operation::create_hyper_parameter_tuning_job::CreateHyperParameterTuningJobError,
80            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
81        >,
82    > {
83        let input = self
84            .inner
85            .build()
86            .map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
87        let runtime_plugins = crate::operation::create_hyper_parameter_tuning_job::CreateHyperParameterTuningJob::operation_runtime_plugins(
88            self.handle.runtime_plugins.clone(),
89            &self.handle.conf,
90            self.config_override,
91        );
92        crate::operation::create_hyper_parameter_tuning_job::CreateHyperParameterTuningJob::orchestrate(&runtime_plugins, input).await
93    }
94
95    /// Consumes this builder, creating a customizable operation that can be modified before being sent.
96    pub fn customize(
97        self,
98    ) -> crate::client::customize::CustomizableOperation<
99        crate::operation::create_hyper_parameter_tuning_job::CreateHyperParameterTuningJobOutput,
100        crate::operation::create_hyper_parameter_tuning_job::CreateHyperParameterTuningJobError,
101        Self,
102    > {
103        crate::client::customize::CustomizableOperation::new(self)
104    }
105    pub(crate) fn config_override(mut self, config_override: impl ::std::convert::Into<crate::config::Builder>) -> Self {
106        self.set_config_override(::std::option::Option::Some(config_override.into()));
107        self
108    }
109
110    pub(crate) fn set_config_override(&mut self, config_override: ::std::option::Option<crate::config::Builder>) -> &mut Self {
111        self.config_override = config_override;
112        self
113    }
114    /// <p>The name of the tuning job. This name is the prefix for the names of all training jobs that this tuning job launches. The name must be unique within the same Amazon Web Services account and Amazon Web Services Region. The name must have 1 to 32 characters. Valid characters are a-z, A-Z, 0-9, and : + = @ _ % - (hyphen). The name is not case sensitive.</p>
115    pub fn hyper_parameter_tuning_job_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
116        self.inner = self.inner.hyper_parameter_tuning_job_name(input.into());
117        self
118    }
119    /// <p>The name of the tuning job. This name is the prefix for the names of all training jobs that this tuning job launches. The name must be unique within the same Amazon Web Services account and Amazon Web Services Region. The name must have 1 to 32 characters. Valid characters are a-z, A-Z, 0-9, and : + = @ _ % - (hyphen). The name is not case sensitive.</p>
120    pub fn set_hyper_parameter_tuning_job_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
121        self.inner = self.inner.set_hyper_parameter_tuning_job_name(input);
122        self
123    }
124    /// <p>The name of the tuning job. This name is the prefix for the names of all training jobs that this tuning job launches. The name must be unique within the same Amazon Web Services account and Amazon Web Services Region. The name must have 1 to 32 characters. Valid characters are a-z, A-Z, 0-9, and : + = @ _ % - (hyphen). The name is not case sensitive.</p>
125    pub fn get_hyper_parameter_tuning_job_name(&self) -> &::std::option::Option<::std::string::String> {
126        self.inner.get_hyper_parameter_tuning_job_name()
127    }
128    /// <p>The <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html">HyperParameterTuningJobConfig</a> object that describes the tuning job, including the search strategy, the objective metric used to evaluate training jobs, ranges of parameters to search, and resource limits for the tuning job. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html">How Hyperparameter Tuning Works</a>.</p>
129    pub fn hyper_parameter_tuning_job_config(mut self, input: crate::types::HyperParameterTuningJobConfig) -> Self {
130        self.inner = self.inner.hyper_parameter_tuning_job_config(input);
131        self
132    }
133    /// <p>The <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html">HyperParameterTuningJobConfig</a> object that describes the tuning job, including the search strategy, the objective metric used to evaluate training jobs, ranges of parameters to search, and resource limits for the tuning job. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html">How Hyperparameter Tuning Works</a>.</p>
134    pub fn set_hyper_parameter_tuning_job_config(mut self, input: ::std::option::Option<crate::types::HyperParameterTuningJobConfig>) -> Self {
135        self.inner = self.inner.set_hyper_parameter_tuning_job_config(input);
136        self
137    }
138    /// <p>The <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html">HyperParameterTuningJobConfig</a> object that describes the tuning job, including the search strategy, the objective metric used to evaluate training jobs, ranges of parameters to search, and resource limits for the tuning job. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html">How Hyperparameter Tuning Works</a>.</p>
139    pub fn get_hyper_parameter_tuning_job_config(&self) -> &::std::option::Option<crate::types::HyperParameterTuningJobConfig> {
140        self.inner.get_hyper_parameter_tuning_job_config()
141    }
142    /// <p>The <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html">HyperParameterTrainingJobDefinition</a> object that describes the training jobs that this tuning job launches, including static hyperparameters, input data configuration, output data configuration, resource configuration, and stopping condition.</p>
143    pub fn training_job_definition(mut self, input: crate::types::HyperParameterTrainingJobDefinition) -> Self {
144        self.inner = self.inner.training_job_definition(input);
145        self
146    }
147    /// <p>The <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html">HyperParameterTrainingJobDefinition</a> object that describes the training jobs that this tuning job launches, including static hyperparameters, input data configuration, output data configuration, resource configuration, and stopping condition.</p>
148    pub fn set_training_job_definition(mut self, input: ::std::option::Option<crate::types::HyperParameterTrainingJobDefinition>) -> Self {
149        self.inner = self.inner.set_training_job_definition(input);
150        self
151    }
152    /// <p>The <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html">HyperParameterTrainingJobDefinition</a> object that describes the training jobs that this tuning job launches, including static hyperparameters, input data configuration, output data configuration, resource configuration, and stopping condition.</p>
153    pub fn get_training_job_definition(&self) -> &::std::option::Option<crate::types::HyperParameterTrainingJobDefinition> {
154        self.inner.get_training_job_definition()
155    }
156    ///
157    /// Appends an item to `TrainingJobDefinitions`.
158    ///
159    /// To override the contents of this collection use [`set_training_job_definitions`](Self::set_training_job_definitions).
160    ///
161    /// <p>A list of the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html">HyperParameterTrainingJobDefinition</a> objects launched for this tuning job.</p>
162    pub fn training_job_definitions(mut self, input: crate::types::HyperParameterTrainingJobDefinition) -> Self {
163        self.inner = self.inner.training_job_definitions(input);
164        self
165    }
166    /// <p>A list of the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html">HyperParameterTrainingJobDefinition</a> objects launched for this tuning job.</p>
167    pub fn set_training_job_definitions(
168        mut self,
169        input: ::std::option::Option<::std::vec::Vec<crate::types::HyperParameterTrainingJobDefinition>>,
170    ) -> Self {
171        self.inner = self.inner.set_training_job_definitions(input);
172        self
173    }
174    /// <p>A list of the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html">HyperParameterTrainingJobDefinition</a> objects launched for this tuning job.</p>
175    pub fn get_training_job_definitions(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::HyperParameterTrainingJobDefinition>> {
176        self.inner.get_training_job_definitions()
177    }
178    /// <p>Specifies the configuration for starting the hyperparameter tuning job using one or more previous tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job.</p>
179    /// <p>All training jobs launched by the new hyperparameter tuning job are evaluated by using the objective metric. If you specify <code>IDENTICAL_DATA_AND_ALGORITHM</code> as the <code>WarmStartType</code> value for the warm start configuration, the training job that performs the best in the new tuning job is compared to the best training jobs from the parent tuning jobs. From these, the training job that performs the best as measured by the objective metric is returned as the overall best training job.</p><note>
180    /// <p>All training jobs launched by parent hyperparameter tuning jobs and the new hyperparameter tuning jobs count against the limit of training jobs for the tuning job.</p>
181    /// </note>
182    pub fn warm_start_config(mut self, input: crate::types::HyperParameterTuningJobWarmStartConfig) -> Self {
183        self.inner = self.inner.warm_start_config(input);
184        self
185    }
186    /// <p>Specifies the configuration for starting the hyperparameter tuning job using one or more previous tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job.</p>
187    /// <p>All training jobs launched by the new hyperparameter tuning job are evaluated by using the objective metric. If you specify <code>IDENTICAL_DATA_AND_ALGORITHM</code> as the <code>WarmStartType</code> value for the warm start configuration, the training job that performs the best in the new tuning job is compared to the best training jobs from the parent tuning jobs. From these, the training job that performs the best as measured by the objective metric is returned as the overall best training job.</p><note>
188    /// <p>All training jobs launched by parent hyperparameter tuning jobs and the new hyperparameter tuning jobs count against the limit of training jobs for the tuning job.</p>
189    /// </note>
190    pub fn set_warm_start_config(mut self, input: ::std::option::Option<crate::types::HyperParameterTuningJobWarmStartConfig>) -> Self {
191        self.inner = self.inner.set_warm_start_config(input);
192        self
193    }
194    /// <p>Specifies the configuration for starting the hyperparameter tuning job using one or more previous tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job.</p>
195    /// <p>All training jobs launched by the new hyperparameter tuning job are evaluated by using the objective metric. If you specify <code>IDENTICAL_DATA_AND_ALGORITHM</code> as the <code>WarmStartType</code> value for the warm start configuration, the training job that performs the best in the new tuning job is compared to the best training jobs from the parent tuning jobs. From these, the training job that performs the best as measured by the objective metric is returned as the overall best training job.</p><note>
196    /// <p>All training jobs launched by parent hyperparameter tuning jobs and the new hyperparameter tuning jobs count against the limit of training jobs for the tuning job.</p>
197    /// </note>
198    pub fn get_warm_start_config(&self) -> &::std::option::Option<crate::types::HyperParameterTuningJobWarmStartConfig> {
199        self.inner.get_warm_start_config()
200    }
201    ///
202    /// Appends an item to `Tags`.
203    ///
204    /// To override the contents of this collection use [`set_tags`](Self::set_tags).
205    ///
206    /// <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services Resources</a>.</p>
207    /// <p>Tags that you specify for the tuning job are also added to all training jobs that the tuning job launches.</p>
208    pub fn tags(mut self, input: crate::types::Tag) -> Self {
209        self.inner = self.inner.tags(input);
210        self
211    }
212    /// <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services Resources</a>.</p>
213    /// <p>Tags that you specify for the tuning job are also added to all training jobs that the tuning job launches.</p>
214    pub fn set_tags(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>) -> Self {
215        self.inner = self.inner.set_tags(input);
216        self
217    }
218    /// <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services Resources</a>.</p>
219    /// <p>Tags that you specify for the tuning job are also added to all training jobs that the tuning job launches.</p>
220    pub fn get_tags(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Tag>> {
221        self.inner.get_tags()
222    }
223    /// <p>Configures SageMaker Automatic model tuning (AMT) to automatically find optimal parameters for the following fields:</p>
224    /// <ul>
225    /// <li>
226    /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html#sagemaker-Type-HyperParameterTuningJobConfig-ParameterRanges">ParameterRanges</a>: The names and ranges of parameters that a hyperparameter tuning job can optimize.</p></li>
227    /// <li>
228    /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ResourceLimits.html">ResourceLimits</a>: The maximum resources that can be used for a training job. These resources include the maximum number of training jobs, the maximum runtime of a tuning job, and the maximum number of training jobs to run at the same time.</p></li>
229    /// <li>
230    /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html#sagemaker-Type-HyperParameterTuningJobConfig-TrainingJobEarlyStoppingType">TrainingJobEarlyStoppingType</a>: A flag that specifies whether or not to use early stopping for training jobs launched by a hyperparameter tuning job.</p></li>
231    /// <li>
232    /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-RetryStrategy">RetryStrategy</a>: The number of times to retry a training job.</p></li>
233    /// <li>
234    /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html">Strategy</a>: Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training jobs that it launches.</p></li>
235    /// <li>
236    /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ConvergenceDetected.html">ConvergenceDetected</a>: A flag to indicate that Automatic model tuning (AMT) has detected model convergence.</p></li>
237    /// </ul>
238    pub fn autotune(mut self, input: crate::types::Autotune) -> Self {
239        self.inner = self.inner.autotune(input);
240        self
241    }
242    /// <p>Configures SageMaker Automatic model tuning (AMT) to automatically find optimal parameters for the following fields:</p>
243    /// <ul>
244    /// <li>
245    /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html#sagemaker-Type-HyperParameterTuningJobConfig-ParameterRanges">ParameterRanges</a>: The names and ranges of parameters that a hyperparameter tuning job can optimize.</p></li>
246    /// <li>
247    /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ResourceLimits.html">ResourceLimits</a>: The maximum resources that can be used for a training job. These resources include the maximum number of training jobs, the maximum runtime of a tuning job, and the maximum number of training jobs to run at the same time.</p></li>
248    /// <li>
249    /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html#sagemaker-Type-HyperParameterTuningJobConfig-TrainingJobEarlyStoppingType">TrainingJobEarlyStoppingType</a>: A flag that specifies whether or not to use early stopping for training jobs launched by a hyperparameter tuning job.</p></li>
250    /// <li>
251    /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-RetryStrategy">RetryStrategy</a>: The number of times to retry a training job.</p></li>
252    /// <li>
253    /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html">Strategy</a>: Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training jobs that it launches.</p></li>
254    /// <li>
255    /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ConvergenceDetected.html">ConvergenceDetected</a>: A flag to indicate that Automatic model tuning (AMT) has detected model convergence.</p></li>
256    /// </ul>
257    pub fn set_autotune(mut self, input: ::std::option::Option<crate::types::Autotune>) -> Self {
258        self.inner = self.inner.set_autotune(input);
259        self
260    }
261    /// <p>Configures SageMaker Automatic model tuning (AMT) to automatically find optimal parameters for the following fields:</p>
262    /// <ul>
263    /// <li>
264    /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html#sagemaker-Type-HyperParameterTuningJobConfig-ParameterRanges">ParameterRanges</a>: The names and ranges of parameters that a hyperparameter tuning job can optimize.</p></li>
265    /// <li>
266    /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ResourceLimits.html">ResourceLimits</a>: The maximum resources that can be used for a training job. These resources include the maximum number of training jobs, the maximum runtime of a tuning job, and the maximum number of training jobs to run at the same time.</p></li>
267    /// <li>
268    /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html#sagemaker-Type-HyperParameterTuningJobConfig-TrainingJobEarlyStoppingType">TrainingJobEarlyStoppingType</a>: A flag that specifies whether or not to use early stopping for training jobs launched by a hyperparameter tuning job.</p></li>
269    /// <li>
270    /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-RetryStrategy">RetryStrategy</a>: The number of times to retry a training job.</p></li>
271    /// <li>
272    /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html">Strategy</a>: Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training jobs that it launches.</p></li>
273    /// <li>
274    /// <p><a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ConvergenceDetected.html">ConvergenceDetected</a>: A flag to indicate that Automatic model tuning (AMT) has detected model convergence.</p></li>
275    /// </ul>
276    pub fn get_autotune(&self) -> &::std::option::Option<crate::types::Autotune> {
277        self.inner.get_autotune()
278    }
279}